Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (2): 132-144.doi: 10.16088/j.issn.1001-6600.2025041001

• Intelligence Information Processing • Previous Articles     Next Articles

Critical Node Identification in Complex Network Based on Multi-feature Gravity Model

CHEN Silin1,2, LIU Jiafei1,2*, ZHOU Hexin1,2, WU Jingli1,2, LI Gaoshi1,2   

  1. 1. Guangxi Key Lab of Muli-Source Information Mining and Security(Guangxi Normal University), Guilin Guangxi 541004, China;
    2. Key lab of Education Blockchain and Intelligent Technology, Ministry of Education(Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2025-04-10 Revised:2025-05-27 Published:2026-02-03

Abstract: Critical node identification has been a research focus in social system, biological system, power system, and transportation system. Existing works exhibit excessive reliance on node degree, k-shell values, or their simplistic combinations while neglecting the influence of adjacent nodes and global positional information. This article proposes a multi-feature gravity model algorithm, termed as HKGM, to identify key nodes within complex networks. Specifically, the proposed scheme comprehensively considers node degree, local propagation capacity involving both first-order and second-order neighboring nodes, and introduces the global location information of nodes, aiming to construct an evaluation scheme that takes into account both the local and global properties of the network. Meanwhile, in response to the issues of algorithm complexity and computational cost in large-scale networks, this study optimizes the computational efficiency of the proposed scheme. To validate its effectiveness, simulation experiments are conducted on nine real-world datasets, comparing HKGM against nine classical algorithms. Results demonstrate that the proposed method outperforms others under evaluation metrics including the SIR propagation model, Kendall correlation coefficient, and CCDF monotonicity function. These findings confirm that HKGM achieves superior discrimination accuracy in key node identification tasks for complex networks, significantly enhancing detection accuracy.

Key words: gravity model, H-index, node influence, crucial node identification, complex networks

CLC Number:  TP39; O157.5
[1] 高超, 蒋世洪, 王震, 等.基于动态客流的城市轨道交通关键站点识别[J].中国科学:信息科学, 2021, 51(9):1490-1506.DOI:10.1360/SSI-2020-0303.
[2] SCABINI L F S, RIBAS L C, NEIVA M B, et al.Social interaction layers in complex networks for the dynamical epidemic modeling of COVID-19 in Brazil[J].Physica A:Statistical Mechanics and Its Applications, 2021, 564:125498.DOI:10.1016/j.physa.2020.125498.
[3] BASNARKOV L.SEAIR Epidemic spreading model of COVID-19[J].Chaos, Solitons & Fractals, 2021, 142:110394.DOI:10.1016/j.chaos.2020.110394.
[4] ZHOU D Y, HU F N, WANG S L, et al.Power network robustness analysis based on electrical engineering and complex network theory[J].Physica A:Statistical Mechanics and Its Applications, 2021, 564:125540.DOI:10.1016/j.physa.2020.125540.
[5] LIU Y Y, SONG A B, SHAN X, et al.Identifying critical nodes in power networks:a group-driven framework[J].Expert Systems with Applications, 2022, 196:116557.DOI:10.1016/j.eswa.2022.116557.
[6] BONACICH P.Factoring and weighting approaches to status scores and clique identification[J].Journal of Mathematical Sociology, 1972, 2(1):113-120.DOI:10.1080/0022250X.1972.9989806.
[7] NEWMAN M E J.A measure of betweenness centrality based on random walks[J].Social Networks, 2005, 27(1):39-54.DOI:10.1016/j.socnet.2004.11.009.
[8] FREEMAN L C.Centrality in social networks conceptual clarification[J].Social Networks, 1978, 1(3):215-239.DOI:10.1016/0378-8733(78)90021-7.
[9] BONACICH P, LLOYD P.Eigenvector-like measures of centrality for asymmetric relations[J].Social Networks, 2001, 23(3):191-201.DOI:10.1016/S0378-8733(01)00038-7.
[10] BUZZANCA M, CARCHIOLO V, LONGHEU A, et al.Black hole metric:overcoming the pagerank normalization problem[J].Information Sciences, 2018, 438:58-72.DOI:10.1016/j.ins.2018.01.033.
[11] LÜ L Y, ZHOU T, ZHANG Q M, et al.The H-index of a network node and its relation to degree and coreness[J].Nature Communications, 2016, 7:10168.DOI:10.1038/ncomms10168.
[12] KITSAK M, GALLOS L K, HAVLIN S, et al.Identification of influential spreaders in complex networks[J].Nature Physics, 2010, 6(11):888-893.DOI:10.1038/nphys1746.
[13] ZAREIE A, SHEIKHAHMADI A, JALILI M.Influential node ranking in social networks based on neighborhood diversity[J].Future Generation Computer Systems, 2019, 94:120-129.DOI:10.1016/j.future.2018.11.023.
[14] LI Z, REN T, MA X Q, et al.Identifying influential spreaders by gravity model[J].Scientific Reports, 2019, 9:8387.DOI:10.1038/s41598-019-44930-9.
[15] LIU F, WANG Z, DENG Y.GMM:a generalized mechanics model for identifying the importance of nodes in complex networks[J].Knowledge-Based Systems, 2020, 193:105464.DOI:10.1016/j.knosys.2019.105464.
[16] LI S Y, XIAO F Y.The identification of crucial spreaders in complex networks by effective gravity model[J].Information Sciences, 2021, 578:725-749.DOI:10.1016/j.ins.2021.08.026.
[17] YANG P L, MENG F Y, ZHAO L J, et al.AOGC:an improved gravity centrality based on an adaptive truncation radius and omni-channel paths for identifying key nodes in complex networks[J].Chaos, Solitons & Fractals, 2023, 166:112974.DOI:10.1016/j.chaos.2022.112974.
[18] ZHU S Q, ZHAN J, LI X.Identifying influential nodes in complex networks using a gravity model based on the H-index method[J].Scientific Reports, 2023, 13:16404.DOI:10.1038/s41598-023-43585-x.
[19] LIU Y, CHENG Z J, LI X Q, et al.An entropy-based gravity model for influential spreaders identification in complex networks[J].Complexity, 2023, 2023(1):6985650.DOI:10.1155/2023/6985650.
[20] 左忠义, 刘泽宇, 杨广川.基于引力影响模型的轨道交通网络关键节点识别研究[J].交通运输系统工程与信息, 2025, 25(1):102-112.DOI:10.16097/j.cnki.1009-6744.2025.01.011.
[21] 周明洋, 吴向阳, 曹扬, 等.基于群体影响力的网络传播关键节点选择策略[J].中国科学:信息科学, 2019, 49(10):1333-1342.DOI:10.1360/N112019-00041.
[22] XU G Q, MENG L.A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model[J].Chaos, Solitons & Fractals, 2023, 168:113155.DOI:10.1016/j.chaos.2023.113155.
[23] 罗余, 王建波, 李平, 等.基于多阶邻居传播度量和拓扑特征的高影响力节点识别[J].中国科学:信息科学, 2024, 54(4):944-959.DOI:10.1360/SSI-2023-0201.
[24] 邹艳丽, 姚飞, 汪洋, 等.基于网络结构和潮流追踪的电网关键节点识别[J].广西师范大学学报(自然科学版), 2019, 37(1):133-141.DOI:10.16088/j.issn.1001-6600.2019.01.015.
[25] LIU Y, ZHONG Y B, LI X Y, et al.Vital nodes identificationvia evolutionary algorithm with percolation optimization in complex networks[J].IEEE Transactions on Network Science and Engineering, 2024, 11(4):3838-3850.DOI:10.1109/TNSE.2024.3388994.
[26] CURADO M, TORTOSA L, VICENT J F.A novel measure to identify influential nodes:return random walk gravity centrality[J].Information Sciences, 2023, 628:177-195.DOI:10.1016/j.ins.2023.01.097.
[27] REN G J, ZHANG M, GUO Y S.Node importance evaluation in air route networks based on Laplacian energy relative entropy[J].Journal of Beijing Jiaotong University, 2023, 47(2).DOI:10.11860/j.issn.1673-0291.20220034.
[28] LEE Y L, WEN Y F, XIE W B, et al.Identifying influential nodes on directed networks[J].Information Sciences, 2024, 677:120945.DOI:10.1016/j.ins.2024.120945.
[29] ZENG A, ZHANG C J.Ranking spreaders by decomposing complex networks[J].Physics Letters A,2013, 377(14):1031-1035.DOI:10.1016/j.physleta.2013.02.039.
[30] LIU J, ZHENG J M.Identifying important nodes in complex networks based on extended degree and E-shell hierarchy decomposition[J].Scientific Reports, 2023, 13:3197.DOI:10.1038/s41598-023-30308-5.
[31] COHEN J E.Infectious diseases of humans:dynamics and control[J].JAMA, 1992, 268(23):3381.DOI:10.1001/jama.1992.03490230111047.
[32] 李翔, 李聪, 王建波.复杂网络传播理论流行的隐秩序[M].北京:高等教育出版社, 2020.
[33] KENDALL M G.A new measure of rank correlation[J].Biometrika, 1938, 30(1/2):81-93.DOI:10.1093/biomet/30.1-2.81.
[1] ZHAO Ming, LUO Qiulian, CHEN Weimeng, CHEN Jiani. Influence of Control Timing and Strength on the Spreading of Epidemic [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 86-97.
[2] LI Juexuan,ZHAO Ming. Influence of Average Degree and Scale of Network on Partial Synchronization of Complex Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 115-124.
[3] WANG Mengfei, HUANG Song. Spatial Linkage of Tourism Economy of Cities in West River Economic Belt in Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 144-150.
[4] ZHANG Bing. Small World Phenomenon of Knowledge Flowing in Complex Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(4): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[2] XU Xiuhong, ZHANG Jinyan, LU Yuling, LIANG Xiaoping, LIAO Guangfeng, LU Rumei. Research Progress of New C21 Steroids in Medicinal Plants of Asclepiadaceae(Ⅱ)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 1 -16 .
[3] WANG Xingyu, ZHENG Haonan, LIU Xiao, CUI Shilong, CAI Jinjun. Research Progress on Preparation of Chitosan-based Adsorbents andTheir Applications Towards Adsorptive Removal of Pollutants From Water[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 17 -30 .
[4] TIAN Sheng, FENG Shuaitao, LI Jia. A Framework for Enhanced Vehicle Trajectory Extraction in Urban Road Scenes[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 31 -51 .
[5] LÜ Hui, SI Ke. Photovoltaic Panel Defect Detection Based on Improved RT-DETR[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 52 -64 .
[6] SONG Guanwu, LI Jianjun. Semantic Segmentation of Remote Sensing Images Basedon Self-distillation Edge Refinement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 65 -76 .
[7] WANG Xuyang, LIANG Yuhang. Multi-scale Asymmetric Attention Transformer for Remote Sensing Image Dehazing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 77 -89 .
[8] ZHANG Shengwei, CAO Jie. Detection Algorithm of Tiny Defects on Steel Surface Based onFourier Convolution and Difference Perception[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 90 -102 .
[9] WANG Wei, LI Zhiwei, ZHANG Zhaoyang, ZHANG Hong, ZHOU Li, WANG Zhen, HUANG Fang, WANG Can. Carbon Emission Prediction of Substation Based on IFA-BP Neural Network Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 103 -114 .
[10] LUO Yuan, ZHU Wenzhong, WANG Wen, WU Yuhao. A Multi-step Water Quality Prediction Model Based on Improved PatchTST[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 115 -131 .