Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (2): 132-144.doi: 10.16088/j.issn.1001-6600.2025041001
• Intelligence Information Processing • Previous Articles Next Articles
CHEN Silin1,2, LIU Jiafei1,2*, ZHOU Hexin1,2, WU Jingli1,2, LI Gaoshi1,2
| [1] 高超, 蒋世洪, 王震, 等.基于动态客流的城市轨道交通关键站点识别[J].中国科学:信息科学, 2021, 51(9):1490-1506.DOI:10.1360/SSI-2020-0303. [2] SCABINI L F S, RIBAS L C, NEIVA M B, et al.Social interaction layers in complex networks for the dynamical epidemic modeling of COVID-19 in Brazil[J].Physica A:Statistical Mechanics and Its Applications, 2021, 564:125498.DOI:10.1016/j.physa.2020.125498. [3] BASNARKOV L.SEAIR Epidemic spreading model of COVID-19[J].Chaos, Solitons & Fractals, 2021, 142:110394.DOI:10.1016/j.chaos.2020.110394. [4] ZHOU D Y, HU F N, WANG S L, et al.Power network robustness analysis based on electrical engineering and complex network theory[J].Physica A:Statistical Mechanics and Its Applications, 2021, 564:125540.DOI:10.1016/j.physa.2020.125540. [5] LIU Y Y, SONG A B, SHAN X, et al.Identifying critical nodes in power networks:a group-driven framework[J].Expert Systems with Applications, 2022, 196:116557.DOI:10.1016/j.eswa.2022.116557. [6] BONACICH P.Factoring and weighting approaches to status scores and clique identification[J].Journal of Mathematical Sociology, 1972, 2(1):113-120.DOI:10.1080/0022250X.1972.9989806. [7] NEWMAN M E J.A measure of betweenness centrality based on random walks[J].Social Networks, 2005, 27(1):39-54.DOI:10.1016/j.socnet.2004.11.009. [8] FREEMAN L C.Centrality in social networks conceptual clarification[J].Social Networks, 1978, 1(3):215-239.DOI:10.1016/0378-8733(78)90021-7. [9] BONACICH P, LLOYD P.Eigenvector-like measures of centrality for asymmetric relations[J].Social Networks, 2001, 23(3):191-201.DOI:10.1016/S0378-8733(01)00038-7. [10] BUZZANCA M, CARCHIOLO V, LONGHEU A, et al.Black hole metric:overcoming the pagerank normalization problem[J].Information Sciences, 2018, 438:58-72.DOI:10.1016/j.ins.2018.01.033. [11] LÜ L Y, ZHOU T, ZHANG Q M, et al.The H-index of a network node and its relation to degree and coreness[J].Nature Communications, 2016, 7:10168.DOI:10.1038/ncomms10168. [12] KITSAK M, GALLOS L K, HAVLIN S, et al.Identification of influential spreaders in complex networks[J].Nature Physics, 2010, 6(11):888-893.DOI:10.1038/nphys1746. [13] ZAREIE A, SHEIKHAHMADI A, JALILI M.Influential node ranking in social networks based on neighborhood diversity[J].Future Generation Computer Systems, 2019, 94:120-129.DOI:10.1016/j.future.2018.11.023. [14] LI Z, REN T, MA X Q, et al.Identifying influential spreaders by gravity model[J].Scientific Reports, 2019, 9:8387.DOI:10.1038/s41598-019-44930-9. [15] LIU F, WANG Z, DENG Y.GMM:a generalized mechanics model for identifying the importance of nodes in complex networks[J].Knowledge-Based Systems, 2020, 193:105464.DOI:10.1016/j.knosys.2019.105464. [16] LI S Y, XIAO F Y.The identification of crucial spreaders in complex networks by effective gravity model[J].Information Sciences, 2021, 578:725-749.DOI:10.1016/j.ins.2021.08.026. [17] YANG P L, MENG F Y, ZHAO L J, et al.AOGC:an improved gravity centrality based on an adaptive truncation radius and omni-channel paths for identifying key nodes in complex networks[J].Chaos, Solitons & Fractals, 2023, 166:112974.DOI:10.1016/j.chaos.2022.112974. [18] ZHU S Q, ZHAN J, LI X.Identifying influential nodes in complex networks using a gravity model based on the H-index method[J].Scientific Reports, 2023, 13:16404.DOI:10.1038/s41598-023-43585-x. [19] LIU Y, CHENG Z J, LI X Q, et al.An entropy-based gravity model for influential spreaders identification in complex networks[J].Complexity, 2023, 2023(1):6985650.DOI:10.1155/2023/6985650. [20] 左忠义, 刘泽宇, 杨广川.基于引力影响模型的轨道交通网络关键节点识别研究[J].交通运输系统工程与信息, 2025, 25(1):102-112.DOI:10.16097/j.cnki.1009-6744.2025.01.011. [21] 周明洋, 吴向阳, 曹扬, 等.基于群体影响力的网络传播关键节点选择策略[J].中国科学:信息科学, 2019, 49(10):1333-1342.DOI:10.1360/N112019-00041. [22] XU G Q, MENG L.A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model[J].Chaos, Solitons & Fractals, 2023, 168:113155.DOI:10.1016/j.chaos.2023.113155. [23] 罗余, 王建波, 李平, 等.基于多阶邻居传播度量和拓扑特征的高影响力节点识别[J].中国科学:信息科学, 2024, 54(4):944-959.DOI:10.1360/SSI-2023-0201. [24] 邹艳丽, 姚飞, 汪洋, 等.基于网络结构和潮流追踪的电网关键节点识别[J].广西师范大学学报(自然科学版), 2019, 37(1):133-141.DOI:10.16088/j.issn.1001-6600.2019.01.015. [25] LIU Y, ZHONG Y B, LI X Y, et al.Vital nodes identificationvia evolutionary algorithm with percolation optimization in complex networks[J].IEEE Transactions on Network Science and Engineering, 2024, 11(4):3838-3850.DOI:10.1109/TNSE.2024.3388994. [26] CURADO M, TORTOSA L, VICENT J F.A novel measure to identify influential nodes:return random walk gravity centrality[J].Information Sciences, 2023, 628:177-195.DOI:10.1016/j.ins.2023.01.097. [27] REN G J, ZHANG M, GUO Y S.Node importance evaluation in air route networks based on Laplacian energy relative entropy[J].Journal of Beijing Jiaotong University, 2023, 47(2).DOI:10.11860/j.issn.1673-0291.20220034. [28] LEE Y L, WEN Y F, XIE W B, et al.Identifying influential nodes on directed networks[J].Information Sciences, 2024, 677:120945.DOI:10.1016/j.ins.2024.120945. [29] ZENG A, ZHANG C J.Ranking spreaders by decomposing complex networks[J].Physics Letters A,2013, 377(14):1031-1035.DOI:10.1016/j.physleta.2013.02.039. [30] LIU J, ZHENG J M.Identifying important nodes in complex networks based on extended degree and E-shell hierarchy decomposition[J].Scientific Reports, 2023, 13:3197.DOI:10.1038/s41598-023-30308-5. [31] COHEN J E.Infectious diseases of humans:dynamics and control[J].JAMA, 1992, 268(23):3381.DOI:10.1001/jama.1992.03490230111047. [32] 李翔, 李聪, 王建波.复杂网络传播理论流行的隐秩序[M].北京:高等教育出版社, 2020. [33] KENDALL M G.A new measure of rank correlation[J].Biometrika, 1938, 30(1/2):81-93.DOI:10.1093/biomet/30.1-2.81. |
| [1] | ZHAO Ming, LUO Qiulian, CHEN Weimeng, CHEN Jiani. Influence of Control Timing and Strength on the Spreading of Epidemic [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 86-97. |
| [2] | LI Juexuan,ZHAO Ming. Influence of Average Degree and Scale of Network on Partial Synchronization of Complex Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 115-124. |
| [3] | WANG Mengfei, HUANG Song. Spatial Linkage of Tourism Economy of Cities in West River Economic Belt in Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 144-150. |
| [4] | ZHANG Bing. Small World Phenomenon of Knowledge Flowing in Complex Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(4): 15-20. |
|