|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (6): 54-68.doi: 10.16088/j.issn.1001-6600.2024100401
凌福1,2, 张永刚1,2, 闻炳海1,2*
LING Fu1,2, ZHANG Yonggang1,2, WEN Binghai1,2*
摘要: 边界处理是流体流动建模中的核心问题,在格子Boltzmann方法(LBM)中尤为关键。曲线边界条件虽然有效提高了单相流模拟中复杂几何边界的精度,但在多相流模拟中,传统的曲线边界条件常常导致显著的质量泄漏和计算误差,这主要是由于传统的曲线边界条件处理格式中未考虑非理想效应导致的过渡区密度非线性变化。本文将非理想效应引入到插值方案中,提出一类基于插值的多相流曲线边界算法,包括线性插值、二次插值和三次插值等方案。通过一系列具有大密度比的静态和动态多相流模拟验证,该方法有效提升多相流边界条件的计算精度,所需要的质量补偿接近于0,并且使虚速度比之前方法降低一个数量级,达到2×10-3以下。
中图分类号: O35
| [1] FILIPPOVA O, HÄNEL D. Grid refinement for lattice-BGK models[J]. Journal of Computational Physics, 1998, 147(1): 219-228. DOI: 10.1006/jcph.1998.6089. [2] MEI R W, LUO L S, SHYY W. An accurate curved boundary treatment in the lattice Boltzmann method[J]. Journal of Computational Physics, 1999, 155(2): 307-330. DOI: 10.1006/jcph.1999.6334. [3] BAO J, YUAN P, SCHAEFER L. A mass conserving boundary condition for the lattice Boltzmann equation method[J]. Journal of Computational Physics, 2008, 227(18): 8472-8487. DOI: 10.1016/j.jcp.2008.06.003. [4] GUO Z L, ZHENG C G, SHI B C. An extrapolation method for boundary conditions in lattice Boltzmann method[J]. Physics of Fluids, 2002, 14(6): 2007-2010. DOI: 10.1063/1.1471914. [5] BOUZIDI M, FIRDAOUSS M, LALLEMAND P. Momentum transfer of a Boltzmann-lattice fluid with boundaries[J]. Physics of Fluids, 2001, 13(11): 3452-3459. DOI: 10.1063/1.1399290. [6] LALLEMAND P, LUO L S. Lattice Boltzmann method for moving boundaries[J]. Journal of Computational Physics, 2003, 184(2): 406-421. DOI: 10.1016/S0021-9991(02)00022-0. [7] YU D Z, MEI R W, SHYY W. A unified boundary treatment in lattice Boltzmann method[C] //41st Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 2003: 953. DOI: 10.2514/6.2003-953. [8] TAO S, HE Q, CHEN B M, et al. One-point second-order curved boundary condition for lattice Boltzmann simulation of suspended particles[J]. Computers & Mathematics with Applications, 2018, 76(7): 1593-1607. DOI: 10.1016/j.camwa.2018.07.013. [9] SHAN X W. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 73(4 Pt 2): 047701. DOI: 10.1103/PhysRevE.73.047701. [10] BENZI R, BIFERALE L, SBRAGAGLIA M, et al. Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 74(2 Pt 1): 021509. DOI: 10.1103/PhysRevE.74.021509. [11] YUAN P, SCHAEFER L. Equations of state in a lattice Boltzmann model[J]. Physics of Fluids, 2006, 18(4): 042101. DOI: 10.1063/1.2187070. [12] HUANG H B, KRAFCZYK M, LU X Y. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 84(4 Pt 2): 046710. DOI: 10.1103/PhysRevE.84.046710. [13] LI Q, LUO K H, LI X J. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2012, 86(1 Pt 2): 016709. DOI: 10.1103/PhysRevE.86.016709. [14] LI Q, LUO K H, LI X J. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2013, 87(5): 053301. DOI: 10.1103/PhysRevE.87.053301. [15] YANG J P, MA X, FEI L L, et al. Effects of hysteresis window on contact angle hysteresis behaviour at large Bond number[J]. Journal of Colloid and Interface Science, 2020, 566: 327-337. DOI: 10.1016/j.jcis.2020.01.042. [16] WEN B H, ZHOU X, HE B, et al. Chemical-potential-based lattice Boltzmann method for nonideal fluids[J]. Physical Review E, 2017, 95: 063305. DOI: 10.1103/PhysRevE.95.063305. [17] WEN B H, ZHAO L, QIU W, et al. Chemical-potential multiphase lattice Boltzmann method with superlarge density ratios[J]. Physical Review E, 2020, 102: 013303. DOI: 10.1103/PhysRevE.102.013303. [18] 何雅玲, 李庆, 王勇, 等. 格子Boltzmann方法的理论及应用[M]. 北京: 高等教育出版社, 2023. [19] 许爱国, 陈杰, 宋家辉, 等. 多相流系统的离散玻尔兹曼研究进展[J]. 空气动力学学报, 2021, 39(3): 138-169. DOI: 10.7638/kqdlxxb-2021.0021. [20] 孙佳坤,林传栋,苏咸利,等.离散Boltzmann方程的求解:基于有限体积法[J].物理学报,2024,73(11):40-49.DOI: 10.7498/aps.73.20231984. [21] D’HUMIÈS D. Generalized lattice-Boltzmann equations, in rarefied gas dynamics: theory and simulations[C] //AIAA Press Washington, DC, 1992,159: 450-458. DOI: 10.2514/5.9781600866319.0450.0458. [22] LALLEMAND P, LUO L S. Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability[J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 61(6 Pt A): 6546-6562. DOI: 10.1103/physreve.61.6546. [23] CHAI Z H, SHI B C. Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: Modeling, analysis, and elements[J]. Physical Review E, 2020, 102: 023306. DOI: 10.1103/PhysRevE.102.023306. [24] KUPERSHTOKH A L, MEDVEDEV D A, KARPOV D I. On equations of state in a lattice Boltzmann method[J]. Computers & Mathematics with Applications, 2009, 58(5): 965-974. DOI: 10.1016/j.camwa.2009.02.024. [25] MCCRACKEN M E, ABRAHAM J. Multiple-relaxation-time lattice-Boltzmann model for multiphase flow[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 71(3 Pt 2B): 036701. DOI: 10.1103/PhysRevE.71.036701. [26] 李旭晖,单肖文,段文洋.格子玻尔兹曼正则化碰撞模型的理论进展[J].空气动力学学报,2022,40(3):46-64. DOI: 10.7638/kqdlxxb-2020.0426. [27] SWIFT M R, OSBORN W R, YEOMANS J M. Lattice Boltzmann simulation of nonideal fluids[J]. Physical Review Letters, 1995, 75(5): 830-833. DOI: 10.1103/PhysRevLett.75.830. [28] WEN B H, QIN Z R, ZHANG C Y, et al. Thermodynamic-consistent lattice Boltzmann model for nonideal fluids[J]. EPL (Europhysics Letters), 2015, 112(4): 44002. DOI: 10.1209/0295-5075/112/44002. [29] JAMET D, TORRES D, BRACKBILL J U. On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method[J]. Journal of Computational Physics, 2002, 182(1): 262-276. DOI: 10.1006/jcph.2002.7165. [30] 李若桐,钟兴国,刘起霖,等.基于格子Boltzmann方法的自由能密度模型[J].广西师范大学学报(自然科学版),2024,42(4):90-99.DOI:10.16088/j.issn.1001-6600.2023080803. [31] 李庆, 余悦, 唐诗. 多相格子Boltzmann方法及其在相变传热中的应用[J]. 科学通报, 2020, 65(17): 1677-1693. DOI: 10.1360/TB-2019-0769. [32] 许爱国, 宋家辉, 陈锋, 等. 基于相空间的复杂物理场建模与分析方法[J]. 计算物理, 2021, 38(6): 631-660. DOI: 10.19596/j.cnki.1001-246x.8379. [33] 杨旭光,汪垒.多相多组分Peng-Robinson流体的正则化格子Boltzmann方法研究及模拟[J].力学学报,2023,55(8): 1649-1661.DOI: 10.6052/0459-1879-23-096. [34] LIU Y S, YAO Y C, LI Q Y, et al. Contact angle measurement on curved wetting surfaces in multiphase lattice Boltzmann method[J]. Langmuir, 2023, 39(8): 2974-2984. DOI: 10.1021/acs.langmuir.2c02763. [35] 柴振华,郭照立,施保昌.利用多松弛格子Boltzmann方法预测多孔介质的渗透率[J].工程热物理学报,2010,31(1):107-109. [36] 娄钦, 汤升, 王浩原. 基于格子Boltzmann大密度比模型的多孔介质内气泡动力学行为数值模拟[J]. 计算物理, 2021, 38(3): 289-300. DOI: 10.19596/j.cnki.1001-246x.8264. [37] 王卓, 杜林, 成龙, 等. 浸入式边界方法的研究及应用进展[J]. 力学进展, 2023, 53(4): 713-739. DOI: 10.6052/1000-0992-23-026. [38] 周锦翔, 肖鸿威, ADNAN Khan, 等. 曲壁面两相流的简单扩散界面浸没边界法[J]. 空气动力学学报, 2023, 41(8): 97-106. DOI: 10.7638/kqdlxxb-2022.0133. [39] 杨鲲,单肖文.多层速度格子Boltzmann方法进展及展望[J].空气动力学学报,2022,40(3):23-45. DOI: 10.7638/kqdlxxb-2021.0348. [40] YU Y, LI Q, WEN Z X. Modified curved boundary scheme for two-phase lattice Boltzmann simulations[J]. Computers & Fluids, 2020, 208: 104638. DOI: 10.1016/j.compfluid.2020.104638. [41] 王习文, 叶学民, 李丹, 等. 大液滴撞击不同润湿性小球的三维格子Boltzmann方法模拟[J]. 计算物理, 2024, 41(2): 172-181. DOI: 10.19596/j.cnki.1001-246x.8689. [42] 黄虎,洪宁,梁宏,等.液滴撞击液膜过程的格子Boltzmann方法模拟[J].物理学报,2016,65(8):248-259. [43] 梁佳, 高明, 陈露, 等. 液滴撞击不同湿润性固壁面上静止液滴的格子Boltzmann研究[J]. 计算物理, 2021, 38(3): 313-323. DOI: 10.19596/j.cnki.1001-246x.8265. [44] 梁佳,高明,陈露,等.基于格子Boltzmann方法的液滴撞击具有不同润湿性孔板的研究[J].应用数学和力学,2022,43(1):63-76. [45] BAKSHI S, ROISMAN I V, TROPEA C. Investigations on the impact of a drop onto a small spherical target[J]. Physics of Fluids, 2007, 19(3): 032102. DOI: 10.1063/1.2716065. [46] FAKHARI A, BOLSTER D. Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: a lattice Boltzmann model for large density and viscosity ratios[J]. Journal of Computational Physics, 2017, 334: 620-638. DOI: 10.1016/j.jcp.2017.01.025. |
| [1] | 陈建国, 梁恩华, 宋学伟, 覃章荣. 基于OCT图像三维重建的人眼房水动力学LBM模拟[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 29-41. |
| [2] | 李若桐, 钟兴国, 刘起霖, 闻炳海. 基于格子Boltzmann方法的自由能密度模型[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 90-99. |
| [3] | 凌风如, 张超英, 陈燕雁, 覃章荣. LBM中基于半程反弹的统一边界条件研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 70-78. |
| [4] | 邱文, 叶勇, 周思浩, 闻炳海. 基于晶格Boltzmann方法研究微液滴形变中接触角[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 27-37. |
| [5] | 覃章荣, 张超英, 丘滨, 李圆圆, 莫刘刘. 基于CUDA的格子Boltzmann数值模拟加速实现[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 18-24. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |