|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (6): 192-201.doi: 10.16088/j.issn.1001-6600.2022112301
石媛媛1,2, 赵隽宇1,2, 宋贤冲1,2, 覃祚玉1,2, 唐健1,2*
SHI Yuanyuan1,2, ZHAO Junyu1,2, SONG Xianchong1,2, QIN Zuoyu1,2, TANG Jian1,2*
摘要: 为明确广西人工林土壤肥力指标环境驱动因子,综合评价土壤肥力水平,本文通过系统收集人工林土壤现状数据,分析主要土壤肥力指标的空间分布规律,并制作全区人工林土壤肥力指数空间分布图。利用典范对应分析方法对土壤肥力指标和环境因子进行分析,获取广西主要土壤类型人工林土壤肥力指标的环境驱动因子。结果显示:全区90%以上人工林的土壤肥力指数处于0.20~0.50,不同土壤类型人工林土壤肥力指数由大到小依次为黄棕壤、黄红壤、黄壤、红壤、石灰岩土、赤红壤、砖红壤。赤红壤人工林土壤碱解氮与有机质和年均气温相关性高,土壤有效磷与有机质和pH相关性高,土壤速效钾与环境因子坡度、海拔、降水量、积温和坡向相关性高。红壤人工林土壤碱解氮与坡度和海拔相关性高,土壤有效磷与积温和降水量相关性高,土壤速效钾与pH相关性高。石灰岩土人工林土壤碱解氮与坡度和有机质相关性高,土壤有效磷与积温和降水量相关性高,土壤速效钾与pH相关性高。综合来看,广西人工林土壤肥力整体偏低,不同土壤类型人工林土壤肥力指标的环境驱动因子各有区别。
中图分类号: S714.8
[1] NABIOLLAHI K,GOLMOHAMADI F, TAGHIZADEH-MEHRJARDI R, et al. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate[J]. Geoderma: An International Journal of Soil Science, 2018, 318: 16-28. DOI:10.1016/j.geoderma.2017.12.024. [2] 张文学,王少先,刘增兵,等. 基于土壤肥力质量综合指数评价化肥与有机肥配施对红壤稻田肥力的提升作用[J]. 植物营养与肥料学报, 2021, 27(5): 777-790. DOI: 10.11674/zwyf.20469. [3] 刘强,穆兴民,高鹏,等. 土壤水力侵蚀对土壤质量理化指标影响的研究综述[J]. 水土保持研究, 2020, 27(6): 386-392. DOI:10.13869/j.cnki.rswc.2020.06.049. [4] ZHU M, FENG Q, ZHANG M X, et al. Effects of topography on soil organic carbon stocks in grasslands of a semiarid alpine region, northwestern China[J]. Journal of Soils and Sediments, 2019, 19(4): 1640-1650. DOI:10.1007/s11368-018-2203-0. [5] GUO Y, ABDALLA M, ESPENBERG M, et al. A systematic analysis and review of the impacts of afforestation on soil quality indicators as modified by climate zone, forest type and age[J]. Science of the Total Environment, 2021, 757:143824. DOI:10.1016/j.scitotenv.2020.143824. [6] ZHU H F,BI R T,DUAN Y H, et al. Scale-location specific relations between soil nutrients and topographic factors in the Fen River Basin, Chinese Loess Plateau[J]. Frontiers of Earth Science, 2017, 11(2): 397-406. DOI:10.1007/s11707-016-0587-y. [7] LIU H,JIN Y, ROCHE L M, et al. Understanding spatial variability of forage production in California grasslands: delineating climate, topography and soil controls[J]. Environmental Research Letters, 2021, 16(1): 014043. DOI:10.1088/1748-9326/abc64d. [8] ZHU J,WU A C,ZHOU G Y. Spatial distribution patterns of soil total phosphorus influenced by climatic factors in China's forest ecosystems[J]. Scientific Reports, 2021, 11(1): 5357. DOI:10.1038/S41598-021-84166-0. [9] 刘旻霞,马建祖.甘南高寒草甸植物功能性状和土壤因子对坡向的响应[J].应用生态学报, 2012, 23(12): 3295-3300. DOI:10.13287/j.1001-9332.2012.0410. [10] MAGE S M, PORDER S. Parent material and topography determine soil phosphorus status in the Luquillo mountains of Puerto Rico[J]. Ecosystems, 2013, 16(2): 284-294. DOI:10.1007/s10021-012-9612-5. [11] LIU S S,QIN T L, DONG B Q, et al. The influence of climate, soil properties and vegetation on soil nitrogen in sloping farmland[J]. Sustainability, 2021, 13(3): 1480. DOI:10.3390/su13031480. [12] HOU E Q,CHEN C G, LUO Y Q, et al. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems[J]. Global Change Biology, 2018, 24(8):3344-3356. DOI:10.1111/gcb.14093. [13] LIU J X, FANG X, TANG X L, et al. Patterns and controlling factors of plant nitrogen and phosphorus stoichiometry across China's forests[J]. Biogeochemistry, 2019, 143(2): 191-205. DOI:10.1007/s10533-019-00556-7. [14] KONG W B, YAO Y F,ZHAO Z N, et al. Effects of vegetation and slope aspect on soil nitrogen mineralization during the growing season in sloping lands of the Loess Plateau[J]. Catena, 2019, 172: 753-763. DOI:10.1016/j.catena.2018.09.037. [15] GOU Y, CHEN H, WU W, et al. Effects of slope position, aspect and cropping system on soil nutrient variability in hilly areas[J]. Soil Research, 2015, 53(3): 338. DOI:10.1071/SR14113. [16] 常旭,邱新彩,刘欣,等. 塞罕坝华北落叶松纯林和混交林土壤肥力质量评价[J]. 北京林业大学学报, 2021, 43(8): 50-59. DOI:10.12171/j.1000-1522.20210189. [17] 石媛媛,赵隽宇,宋贤冲,等. 基于森林气候与土壤类型的广西人工林土壤分区及其肥力演变[J]. 广西林业科学, 2021, 50(5): 563-569. DOI:10.19692/j.cnki.gfs.2021.05.014. [18] 赵隽宇,石媛媛,覃祚玉,等. 南亚热带桉树人工林土壤肥力障碍因子评价[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 205-214. DOI:10.16088/j.issn.1001-6600.2021052604. [19] 李颖慧,姜小三,王振华,等. 基于土壤肥力和重金属污染风险的农用地土壤质量综合评价研究:以山东省博兴县为例[J]. 土壤通报, 2021, 52(5): 1052-1062. DOI:10.19336/j.cnki.trtb.2020122401. [20] 曹小玉,李际平,闫文德. 杉木林改造前后的土壤肥力对比分析及综合评价[J]. 土壤通报, 2016, 47(5): 1231-1237. DOI:10.19336/j.cnki.trtb.2016.05.32. [21] 姜冰,王松涛,孙增兵,等. 基于隶属度函数和主成分分析的耕地土壤肥力评价[J]. 中国农学通报, 2023, 39(2): 22-27. [22] 吴波. 长江口区藻类分布格局及其与环境因子相关性的研究[D]. 上海: 华东师范大学, 2015. [23] 杨鸿儒. 西鄂尔多斯荒漠灌木根际细菌多样性和群落结构的研究[D]. 呼和浩特:内蒙古农业大学, 2016. [24] BAGHERI BODAGHABADI M B, SALEHI M H, MARTÍNEZ-CASASNOVAS J A, et al. Using canonical correspondence analysis (CCA) to identify the most important DEM attributes for digital soil mapping applications[J]. Catena, 2011, 86(1): 66-74. DOI:10.1016/j.catena.2011.02.009. [25] 石媛媛,唐健,邓小军,等. 基于GIS的广西油茶林地土壤养分空间变异和肥力适宜性评价[J]. 林业调查规划, 2014, 39(3): 1-6, 11. DOI: 10.3969/j.issn.1671-3168.2014.03.001. [26] 《广西森林》编辑委员会. 广西森林[M].北京:中国林业出版社,2001: 352-450. [27] 广西土壤肥料工作站. 广西土壤[M].南宁:广西科学技术出版社, 1994: 117-135. [28] 严广寒,殷雪妍,汪星,等. 基于种群、功能群对比分析洞庭湖浮游植物群落驱动因素及水质评价[J/OL]. 环境科学:1-18[2022-11-20].http//doi.org/10.13227/j.hjkx.202212107. [29] 鲁如坤. 土壤—植物营养学[M]. 北京:化学工业出版社, 1998: 45-67. [30] 秦小静,孙建,王海明. 三江源土壤养分分布特征及其对主要气候要素的响应[J]. 生态环境学报, 2015, 24(8): 1295-1301. DOI:10.16258/j.cnki.1674-5906.2015.08.006. [31] 朱德煌,刘金福. 戴云山不同海拔梯度黄山松群落特征及林下土壤养分状况[J]. 福建农林大学学报(自然科学版), 2022,51(6): 754-759. DOI:10.13323/j.cnki.j.fafu(nat.sci.).2022.06.006. [32] 闫洋洋,王谢,严坤,等. 干热河谷区泥石流滩地不同景观类型土壤与微生物量C、N、P生态化学计量特征[J]. 生态学报,2023,43(11):1-12. DOI:10.5846/stxb202110112858. [33] 程鸿雁,张兰英,王凤,等. 山东省赤松人工林土壤理化特性与综合肥力[J]. 中国农学通报, 2022, 38(23): 70-76. [34] 许业洲,侯义梅,袁慧,等. 基于Nemerow法和隶属度函数的湖北杉木人工林土壤肥力评价[J]. 中南林业科技大学学报, 2021, 41(5): 1-11, 28. DOI:10.14067/j.cnki.1673-923x.2021.05.001. [35] 张志坚,刘苑秋,吴春生,等. 基于地统计学和GIS的江西省森林土壤养分空间分布特征[J]. 水土保持研究, 2018, 25(1): 38-46. DOI:10.13869/j.cnki.rswc.2018.01.007. [36] MOUSTAKIDIS I V,SCHILLING K E,WEBER L J. Soil total phosphorus deposition and variability patterns across the floodplains of an Iowa river[J]. Catena, 2019, 174: 84-94. DOI:10.1016/j.catena.2018.10.019. [37] WANG A, WANG X, TOGNETTI R, et al. Elevation alters carbon and nutrient concentrations and stoichiometry in Quercus aquifolioides in southwestern China[J]. Science of the Total Environment, 2018, 622/623: 1463-1475. DOI:10.1016/j.scitotenv.2017.12.070. [38] TSOZUÉ D, NGHONDA J P, TEMATIO P, et al. Changes in soil properties and soil organic carbon stocks along an elevation gradient at Mount Bambouto, Central Africa[J]. Catena, 2019, 175: 251-262. DOI:10.1016/j.catena.2018.12.028175. [39] 朱婧,刘鼎,王珊,等. 土壤养分及其化学计量特征对微生物碳利用效率的影响机制[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 376-387. DOI:10.16088/j.issn.1001-6600.2022022810. |
[1] | 朱柏露, 杨奇勇, 谢运球, 邓艳, 唐梅蓉, 刘大存, 曾红春. 漓江流域土地石漠化空间分布及驱动因子分析[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 139-150. |
[2] | 刘士李, 朱晓虎, 刘丽, 方天睿. 基于模糊平滑的安徽地区110 kV GIS 变电站LCC 模糊估算模型[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 24-33. |
[3] | 杜雪松,林勇,梁国琨,黄姻,宾石玉,陈忠,覃俊奇,赵怡. 两种罗非鱼的耐寒性能比较[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 174-179. |
[4] | 韩会庆, 蔡广鹏, 尹昌应, 马庚, 张英佳, 陆艺. 2000年和2015年乌江中上游景观稳定性变化研究[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 197-204. |
[5] | 张茹, 张蓓, 任鸿瑞. 山西轩岗矿区耕地流失时空特征及其影响因子研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 121-132. |
[6] | 黄焕春, 运迎霞, 王世臻, 屈永超, 苗展堂. 基于CA模型的海港城市空间形态演化模式研究——以天津滨海新区外生情景模拟为例[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 7-15. |
[7] | 王小燕, 任国业, 刘卫东, 汪宏. 基于遥感和GIS的洪水灾情快速统计模拟技术[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 32-38. |
[8] | 杜雪松, 宾石玉, 林勇, 唐章生, 张永德, 曾兰, 杨慧赞, 陈忠. 基于ULCIZ和SIT的罗非鱼耐寒性能测定模型[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 134-139. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |