2025年04月23日 星期三

广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (1): 110-120.doi: 10.16088/j.issn.1001-6600.2024052801

• “生态保护与资源可持续利用”专辑 • 上一篇    下一篇

气候变化情景下云南省茶适生区空间模拟研究

杨丽莎, 林钏, 张文齐, 崔换峰, 王艳霞*   

  1. 西南林业大学 水土保持学院,云南 昆明 650224
  • 收稿日期:2024-05-28 修回日期:2024-06-24 出版日期:2025-01-05 发布日期:2025-02-07
  • 通讯作者: 王艳霞(1982—),女,山东莱芜人,西南林业大学副教授,博士。E-mail:po_powyx1@163.com
  • 基金资助:
    国家自然科学基金(42061004); 云南省农业基础联合专项(202101BD070001-093); 云南省兴滇英才支持计划青年专项(2022-0230)

Spatial Simulation of Tea Suitable Area in Yunnan Province under Climate Change Scenarios

YANG Lisha, LIN Chuan, ZHANG Wenqi, CUI Huanfeng, WANG Yanxia*   

  1. Faculty of Soil and Water Conservation, Southwest Forestry University, Kunming Yunnan 650224, China
  • Received:2024-05-28 Revised:2024-06-24 Online:2025-01-05 Published:2025-02-07

摘要: 茶是对气候变化极其敏感的作物之一,评价气候变化对云南省茶分布的影响,对制定茶区发展规划,保护生物多样性具有重要意义。根据100个茶分布点(分别为50个存在分布点和50个伪不存在分布点)以及14个环境因子,基于RF模型以及ArcGIS空间分析技术对云南省茶当前以及未来2041—2060年、2081—2100年不同情景下(SSP1-2.6、SSP3-7.0和SSP5-8.5)适生区进行空间模拟与预测。结果表明:1)RF模型精度为0.92,属非常好水平。年均降水量、坡度、最冷季平均降水量、最干季降水量、温度全年波动范围、坡向、曲率等因子对茶的分布具有显著影响。2)当前茶高适生区和适生区由南至北逐渐递减,呈C形分布,高适生区面积8.10×104 km2,约占云南省茶适生面积的21.07%,适生区面积约9.18×104 km2,约占云南省茶适生面积的23.88%。3)未来气候变化下,茶适生区面积扩大,适生区域往北移,呈W型分布变化,其中保山、临沧、普洱北部、红河等地适生区面积将明显扩大。未来新增适生区面积中对森林面积的侵占明显,因此可能导致新茶园开垦与森林面积以及生物多样性保护之间的冲突。

关键词: 气候变化, 茶, 适生区, 随机森林, 生物多样性

Abstract: Tea (Camellia sinensis), is extremely sensitive to climate change, so the impact of climate change on the distribution of tea in Yunnan Province is evaluated to formulate a development plan for tea-growing areas and protect biodiversity. Based on 100 tea distribution points (50 presence distribution points and 50 pseudo-absence distribution points, respectively) and 14 environmental variables, the suitable habitat areas of tea in Yunnan Province under different scenarios (SSP1-2.6, SSP3-7.0 and SSP5-8.5) at present and in future 2041-2060 and 2081-2100 were simulated and predicted based on RF model and ArcGIS spatial analysis technology. The results showed that: 1) The accuracy of the RF model is 0.92, which was a very good level. Factors such as annual average rainfall, slope, rainfall in the driest season, average rainfall in the coldest season, annual temperature fluctuation range, slope aspect, curvature and other factors had significant effects on the distribution of tea. 2) At present, the most suitable and suitable areas for tea trees gradually decrease from south to north, showing a C-shaped distribution, with 8.10×104 km2 being highly suitable, accounting for approximately 21.07% of Yunnan Province, and approximately 9.18×104 km2 being suitable, accounting for approximately 23.88% of Yunnan Province. 3) With future climate change, the suitable areas of tea plants will expand andmove northward, showing a W-shaped distribution change; the suitable areas of tea plante in Baoshan, Lincang, northern Pu’er, Honghe, and other areas will considerably expand. In the future, the newly-developed area of suitable areas of tea will encroach on the forest area, which may lead to the conflict between the reclamation of new tea plantations and the conservation of forest area and biodiversity.

Key words: climatic change, teas, suitable areas, random forest, biodiversity

中图分类号:  S571.1;S162.54

[1] KOGO B K, KUMAR L, KOECH R. Climate change and variability in Kenya: a review of impacts on agriculture and food security[J]. Environment, Development and Sustainability, 2021, 23(1): 23-43. DOI: 10.1007/s10668-020-00589-1.
[2] HASEGAWA T, SAKURAI G, FUJIMORI S, et al. Extreme climate events increase risk of global food insecurity and adaptation needs[J]. Nature Food, 2021, 2(8): 587-595. DOI: 10.1038/s43016-021-00335-4.
[3] ANDERSON R, BAYER P E, EDWARDS D. Climate change and the need for agricultural adaptation[J]. Current Opinion in Plant Biology, 2020, 56: 197-202. DOI: 10.1016/j.pbi.2019.12.006.
[4] 何雨芩,张茂松,黄成兵,等. 基于GIS的云南省茶树种植气候适宜性区划[J]. 安徽农业科学, 2015, 43(25): 218-221. DOI: 10.13989/j.cnki.0517-6611.2015.25.221.
[5] 杨亚军. 中国茶树栽培学[M]. 上海: 上海科学技术出版社, 2005: 116-126.
[6] OCHIENG J, KIRIMI L, MATHENGE M. Effects of climate variability and change on agricultural production:the case of small scale farmers in Kenya[J]. NJAS: Wageningen Journal of Life Sciences, 2016, 77: 71-78. DOI: 10.1016/j.njas.2016.03.005.
[7] JAYASINGHE S L, KUMAR L. Climate change may imperil tea production in the four major tea producers according to climate prediction models[J]. Agronomy, 2020, 10(10): 1536. DOI: 10.3390/agronomy10101536.
[8] HALLEGATTE S, CORFEE-MORLOT J. Understanding climate change impacts, vulnerability and adaptation at city scale: an introduction[J]. Climatic Change, 2011, 104(1): 1-12. DOI: 10.1007/s10584-010-9981-8.
[9] 张晓玲, 李亦超, 王芸芸, 等. 未来气候变化对不同国家茶适宜分布区的影响[J]. 生物多样性, 2019, 27(6): 595-606.DOI: 10.17520/biods.2019085.
[10] 刘博洋. 中国裂谷热媒介分布、风险评估及传播模型研究[D]. 哈尔滨: 东北农业大学, 2020. DOI: 10.27010/d.cnki.gdbnu.2020.000001.
[11] THUILLER W, LAFOURCADE B, ENGLER R,et al. BIOMOD-a platform for ensemble forecasting of species distributions[J]. Ecography, 2009, 32(3): 369-373. DOI: 10.1111/j.1600-0587.2008.05742.x.
[12] MI C R, HUETTMANN F, GUO Y M, et al. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence[J]. PeerJ, 2017, 5: e2849. DOI: 10.7717/peerj.2849.
[13] RATHER T A, KUMAR S, KHAN J A. Multi-scale habitat modelling and predicting change in the distribution of tiger and leopard using random forest algorithm[J]. Scientific Reports, 2020, 10(1): 11473. DOI: 10.1038/s41598-020-68167-z.
[14] PIN KEONG E, EHSAN RANA M, ABDUL HAMEED V. Crop suitability prediction model for Malaysian crop diversification[C]//2022 International Conference on Decision Aid Sciences and Applications (DASA). Piscataway, NJ: IEEE, 2022: 1004-1012. DOI: 10.1109/DASA54658.2022.9765283.
[15] GBIF.org. GBIF occurrence download[DB/OL].(2023-06-29)[2024-05-28]. https://doi.org/10.15468/dl.56zyh8.
[16] 张雷, 王琳琳, 张旭东, 等. 随机森林算法基本思想及其在生态学中的应用: 以云南松分布模拟为例[J]. 生态学报, 2014, 34(3): 650-659. DOI: 10.5846/stxb201306031292.
[17] 杨洋, 何春阳, 李晓兵. 基于GIS的云南栽培型普洱茶树大规模种植适宜性评价[J]. 北京林业大学学报, 2010, 32(3): 33-40. DOI: 10.13332/j.1000-1522.2010.03.010.
[18] WEI G Y, ZHOU R L. Comparison of machine learning and deep learning models for evaluating suitable areas for premium teas in Yunnan, China[J]. PLoS One, 2023, 18(2): e0282105. DOI: 10.1371/journal.pone.0282105.
[19] 卢玲,刘超. 基于世界土壤数据库(HWSD)的中国土壤数据集(v1.1)[DB/OL]. 兰州: 国家冰川冻土沙漠科学数据中心, 2019[2024-05-28]. https://www.doi.org/10.12072/ncdc.westdc.db3647.2023.
[20] 张华纬, 李志鹏. 基于随机森林模型和GIS的假臭草全国适生区预测[J]. 亚热带植物科学, 2023, 52(1): 50-59. DOI: 10.3969/j.issn.1009-7791.2023.01.008.
[21] LIU D, LEI X D, GAO W Q,et al. Mapping the potential distribution suitability of 16 tree species under climate change in northeastern China using Maxent modelling[J]. Journal of Forestry Research, 2022, 33(6): 1739-1750. DOI: 10.1007/s11676-022-01459-4.
[22] 唐俊贤, 王培娟, 俄有浩, 等. 中国大陆茶树种植气候适宜性区划[J].应用气象学报, 2021, 32(4): 397-407. DOI: 10.11898/1001-7313.20210402.
[23] 周鹏飞, 刘琳, 杨晋帆, 等. 基于机器学习的云南省蝙蝠空间分布及其危害分析[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 139-149. DOI: 10.16088/j.issn.1001-6600.2022121102.
[24] LUAN J, ZHANG C L, XU B D, et al. The predictive performances of random forest models with limited sample size and different species traits[J]. Fisheries Research, 2020, 227: 105534. DOI: 10.1016/j.fishres.2020.105534.
[25] 宗迪迪, 董灵波, 刘兆刚. 基于最大熵和随机森林模型的3种珍贵硬阔叶树种潜在分布预测[J]. 广西林业科学, 2024, 53(1): 1-9. DOI: 10.19692/j.issn.1006-1126.20240101.
[26] 胡炳. 云茶大典[M]. 昆明: 云南民族出版社, 2008: 31-40.
[27] ZHAO Y C, XU Y L, ZHANG L, et al. Adapting tea production to climate change under rapid economic development in China from 1987 to 2017[J]. Agronomy, 2022, 12(12): 3192. DOI: 10.3390/agronomy12123192.
[28] ZHAO Y C, ZHAO M Y, ZHANG L, et al. Predicting possible distribution of tea (Camellia sinensis L.) under climate change scenarios using MaxEnt model in China[J]. Agriculture, 2021, 11(11): 1122. DOI: 10.3390/agriculture11111122.
[29] 金志凤, 封秀燕. 基于GIS的浙江省茶树栽培气候区划[J]. 茶叶, 2006, 32(1):7-10. DOI: 10.3969/j.issn.0577-8921.2006.01.003.
[30] SHIOGAMA H, FUJIMORI S, HASEGAWA T, et al. Important distinctiveness of SSP3-7.0 for use in impact assessments[J]. Nature Climate Change, 2023, 13(12): 1276-1278. DOI: 10.1038/s41558-023-01883-2.
[31] TONNANG H E Z, SOKAME B M, ABDEL-RAHMAN E M, et al. Measuring and modelling crop yield losses due to invasive insect pests under climate change[J]. Current Opinion in Insect Science, 2022, 50: 100873. DOI: 10.1016/j.cois.2022.100873.
[32] ALI M, ISLAM M, SAHA N,et al. Effects of microclimatic parameters on tea leaf production in different tea estates in Bangladesh[J]. World Journal of Agricultural Sciences, 2014, 10(3): 134-140. DOI: 10.5829/idosi.wjas.2014.10.3.1739.
[33] DAI Y C. The overlap of suitable tea plant habitat with Asian elephant (Elephus maximus) distribution in southwestern China and its potential impact on species conservation and local economy[J]. Environmental Science and Pollution Research, 2022, 29(4): 5960-5970. DOI: 10.1007/s11356-021-16014-7.
[34] LI Z, FANG G H, CHEN Y N, et al. Agricultural water demands in Central Asia under 1.5 ℃ and 2.0 ℃ global warming[J]. Agricultural Water Management, 2020, 231: 106020. DOI: 10.1016/j.agwat.2020.106020.
[1] 王艳茹, 姚维, 陈心悦, 汪国海, 周岐海. 基于MaxEnt和ArcGIS分析气候变化背景下水茄的潜在适生区[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 205-214.
[2] 农小霞, 郁华英, 向盈盈, 杨盼宇, 张启伟. 基于MaxEnt模型的中国黄杉潜在适宜生境变化分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 215-225.
[3] 周鹏飞, 刘琳, 杨晋帆, 刘婷婷, 魏贵宇, 周汝良. 基于机器学习的云南省蝙蝠空间分布及其危害分析[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 139-149.
[4] 常燕玲, 梁晓琴, 黄艳, 潘立卫, 侯萍, 任晨阳, 李俊. 长叶香茶菜中的三萜类化合物[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 158-164.
[5] 贾艳红, 苏筱茜, 李鹤冉. 1991—2020年南宁市气候变化特征分析[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 190-200.
[6] 梁林盼, 凌雪, 方姣, 苏志恒, 郑华. 基于网络药理学和分子对接探讨瑶山甜茶治疗2型糖尿病的作用机制[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 143-154.
[7] 李婷, 徐正会, 李彪, 翟奖, 韩秀, 张新民. 四川大凉山东部地区蚂蚁物种分布特征[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 174-191.
[8] 卓文花, 李丽香, 盘远方, 姜勇, 林红玲, 何雁, 方耀成, 梁士楚, 苏权. 桂林丘陵区不同坡位对灌木物种多样性和土壤因子的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 192-199.
[9] 张小丽, 陈泽柠, 武正军. 蜥蜴与气候变化的研究热点演变分析——基于Web of Science数据库[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 332-341.
[10] 朱婧, 刘鼎, 王珊, 黄祚水, 梁建宏. 土壤养分及其化学计量特征对微生物碳利用效率的影响机制[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 376-387.
[11] 陈超, 徐正会, 张新民, 郭宁妍, 刘霞, 钱怡顺, 祁彪. 四川大凉山中部蚂蚁物种多样性研究[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 218-230.
[12] 李城恩, 潘晓映, 王美涵, 施建华. 基于区间型数据计量的我国粮食产量研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 206-215.
[13] 李爽, 刘上丽, 裴思玉, 唐绍清. 基于单拷贝核基因PAL研究贵州金花茶遗传多样性[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 128-135.
[14] 唐文迪, 黎国庆, 黄俊, 黎青, 覃江克. 油茶皂素和多酚的综合提取工艺研究[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 131-138.
[15] 韦振汉, 宋树祥, 夏海英. 基于随机森林的锂离子电池荷电状态估算[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 27-33.
Viewed
Full text
30
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 30

  From Others local
  Times 10 20
  Rate 33% 67%

Abstract
59
Just accepted Online first Issue
0 0 59
  From Others local
  Times 53 6
  Rate 90% 10%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[2] 刘畅平, 宋树祥, 蒋品群, 岑明灿. 基于开关电容的差分无源N通道滤波器[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 52 -60 .
[3] 王淑颖, 卢宇翔, 董淑彤, 陈默, 康秉娅, 蒋长兰, 宿程远. 污水中抗生素抗性基因传播过程及控制技术研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 1 -15 .
[4] 钟俏, 陈生龙, 唐聪聪. 水凝胶技术在微藻采收中的应用:现状、挑战与发展分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 16 -29 .
[5] 翟思琪, 蔡文君, 朱苏, 李韩龙, 宋海亮, 杨小丽, 杨玉立. 汲取液溶质反向扩散与正渗透中膜污染的相互关系研究[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 30 -39 .
[6] 郑国权, 秦永丽, 汪晨祥, 葛仕佳, 闻倩敏, 蒋永荣. ABR硫酸盐还原体系分级沉淀酸性矿山废水中重金属及矿物形成[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 40 -52 .
[7] 刘洋, 张毅杰, 章延, 李玲, 孔祥铭, 李红. 饮用水处理中藻类混凝消除技术的现状与趋势——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 53 -66 .
[8] 田晟, 陈东. 基于深度强化学习的网联燃料电池混合动力汽车生态驾驶联合优化方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 67 -80 .
[9] 陈秀锋, 王成鑫, 赵凤阳, 杨凯, 谷可鑫. 改进DQN算法的单点交叉口信号控制方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 81 -88 .
[10] 李欣, 宁静. 基于时空特征融合的电力系统暂态稳定评估[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 89 -100 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发