2025年04月23日 星期三

广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (6): 205-214.doi: 10.16088/j.issn.1001-6600.2023110303

• “污水处理”专栏 • 上一篇    下一篇

基于MaxEnt和ArcGIS分析气候变化背景下水茄的潜在适生区

王艳茹1,2,3, 姚维1,2,3, 陈心悦4, 汪国海4*, 周岐海1,2,3*   

  1. 1.珍稀濒危动植物生态和环境保护教育部重点实验室(广西师范大学), 广西 桂林 541006;
    2.广西珍稀濒危动物生态学重点实验室(广西师范大学), 广西 桂林 541006;
    3.崇左白头叶猴野外科学观测研究站,广西 崇左 532204;
    4.广西民族师范学院 化学与生物工程学院, 广西 崇左 532200
  • 收稿日期:2023-11-03 修回日期:2024-01-11 出版日期:2024-12-30 发布日期:2024-12-30
  • 通讯作者: 汪国海(1986—), 男, 广西乐业人, 广西民族师范学院讲师, 博士。E-mail: 1016729581@qq.com;周岐海(1976—), 男, 广西贵港人, 广西师范大学教授, 博士。E-mail: zhouqh@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(32170492, 32270504); 广西自然科学基金(2019GXNSFDA245021, 2023GXNSFAA026422); 广西民族师范学院科研项目(2021BS002)

Prediction of Potential Suitable Areas of Solanum torvum Based on MaxEnt and ArcGIS

WANG Yanru1,2,3, YAO Wei1,2,3, CHEN Xinyue4, WANG Guohai4*, ZHOU Qihai1,2,3*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Rare and Endangered Animal Ecology (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. The Chongzuo White-headed Langur Field Observation and Research Station of Guangxi, Chongzuo Guangxi 532204, China;
    4. College of Chemistry and Bioengineering, Guangxi Minzu Normal University, Chongzuo Guangxi 532200, China
  • Received:2023-11-03 Revised:2024-01-11 Online:2024-12-30 Published:2024-12-30

摘要: 对不同气候条件下植物适生区范围进行预测,有利于掌握该物种的植物地理分布特征及其对气候变化的响应策略。本研究基于水茄Solanum torvum现存的地理分布数据,利用最大熵模型(MaxEnt 3.4.4)模拟当前和未来2050s(2041—2060年)、2070s(2061—2080年)在3种不同温室气体气候情景下(RCP2.6、RCP4.5和RCP8.5)水茄的潜在适生区,并通过ArcGIS 10.8进行可视化处理,分析其在中国的潜在空间格局及其环境影响因素。结果显示:模型训练数据集AUC值为0.962,表明模型的预测结果准确;年温度变化范围(bio7)、最冷季平均温度(bio11)、年均降水量(bio12)和最干季降水量(bio17)是影响水茄地理分布的主要环境因子。当前气候条件下,水茄的总适生区面积为79.14×104 km2,高适生区面积为17.86×104 km2,主要集中分布于广西和广东。不同时期水茄的适生区面积存在一定差异,未来各个时期水茄潜在分布区面积均有增大趋势,但2050s RCP4.5时期台湾地区的适生区面积却比当前减少了0.05×104 km2。因此,气候变暖对水茄的地理分布扩张有利。

关键词: 水茄, MaxEnt 模型, 适生区预测, 气候变化

Abstract: Predicting the range of suitable areas for plants under different climatic conditions is beneficial for understanding the geographical distribution characteristics of this plants and its response strategies to climate change. The potential distribution area of Solanum torvum in China under present and three future Representative Concentration Pathways scenarios (RCP2.6, RCP4.5 and RCP8.5) in 2050s and 2070s were simulated by the MaxEnt model (3.4.4), and then using ArcGIS (10.8) for visualization and analysis of its potential spatial patterns and environmental influencing factors in China. The AUC value for the reconstructed MaxEnt was 0.962, indicating excellent prediction accuracy of the model. Temperature annual range (bio7), mean temperature of the coldest quarter (bio11), annual precipitation (bio12), and precipitation of the driest quarter (bio17) were the dominant environmental factors that affected the distribution of S. torvum. The potentially suitable areas for the current distribution of S. torvum cover 79.14×104 km2, with a high suitability area 17.86×104 km2. The high suitability areas were mainly located in Guangxi and Guangdong provinces. There were significant differences in the suitable area of S. torvum between different periods, and its suitable area generally showed an expanding trend in future climate scenario. However, compared with the potential suitable area in the current climate, its suitable areas in Taiwan decreased 0.05×104 km2 under the 2050s RCP4.5 period. Therefore, climate warming was beneficial for the geographical expansion of S. torvum.

Key words: Solanum torvum, MaxEnt, suitable area prediction, climate change

中图分类号:  Q948

[1] KONCKI N G, ARONSON M F J. Invasion risk in a warmer world: Modeling range expansion and habitat preferences of three nonnative aquatic invasive plants[J]. Invasive Plant Science and Management, 2015, 8(4): 436-449. DOI: 10.1614/IPSM-D-15-00020.1.
[2] LIPPMANN R, BABBEN S, MENGER A, et al. Development of wild and cultivated plants under global warming conditions[J]. Current Biology, 2019, 29(24): R1326-R1338. DOI: 10.1016/j.cub.2019.10.016.
[3] 吴晓萌, 叶冬梅, 白玉娥, 等. 基于MaxEnt模型的中国白杄分布格局及未来变化[J]. 西北植物学报, 2022, 42(1): 162-172. DOI: 10.7606/j.issn.1000-4025.2022.01.0162.
[4] GRAHAM E M, RESIDE A E, ATKINSON I, et al. Climate change and biodiversity in Australia: a systematic modelling approach to nationwide species distributions[J]. Australasian Journal of Environmental Management, 2019, 26(2): 112-123. DOI: 10.1080/14486563.2019.1599742.
[5] NGUYEN T T, GLIOTTONE I, PHAM M P, et al. Current and future habitat suitability map of Cunninghamia konishii Hayata under climate change in northern Vietnam[J]. European Journal of Ecology, 2021, 7: 1-17.
[6] 洪楚楚, 王百竹, 白建华, 等. 气候变化情景下中国荒漠锦鸡儿潜在适生区的时空变化分析[J]. 西北植物学报, 2023, 43(5): 856-866. DOI: 10.7606/j.issn.1000-4025.2023.05.0856.
[7] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231-259. DOI: 10.1016/j.ecolmodel.2005.03.026.
[8] 文国卫, 黄秋良, 吕增伟, 等. 气候变化情境下木荷潜在地理分布及生态适宜性分析[J]. 生态学报, 2023, 43(16): 6617-6626. DOI: 10.5846/stxb202201130121.
[9] 王绮, 樊保国, 赵光华. 气候变化下毛榛在中国的潜在适生区预测[J]. 生态学杂志, 2020, 39(11): 3774-3784. DOI: 10.13292/j.1000-4890.202011.014.
[10] ESTES L D, BRADLEY B A, BEUKES H, et al. Comparing mechanistic and empirical model projections of crop suitability and productivity: implications for ecological forecasting[J]. Global Ecology and Biogeography, 2013, 22(8): 1007-1018. DOI: 10.1111/geb.12034.
[11] ABOLMAALI S M R, TARKESH M, BASHARI H. MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran[J]. Ecological Informatics, 2018, 43: 116-123. DOI: 10.1016/j.ecoinf.2017.10.002.
[12] 庞丽芳, 庾太林. 基于MaxEnt 模型的黄腹角雉潜在生境预测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 123-133. DOI: 10.16088/j.issn.1001-6600.2022092101.
[13] 王国峥, 耿其芳, 肖孟阳, 等. 基于4种生态位模型的金钱松潜在适生区预测[J]. 生态学报, 2020, 40(17): 6096-6104. DOI: 10.5846/stxb201907021390.
[14] ARSHAD F, WAHEED M, FATIMA K, et al. Predicting the suitable current and future potential distribution of the native endangered tree Tecomella undulata (Sm.) Seem. in Pakistan[J]. Sustainability, 2022, 14(12): 7215. DOI: 10.3390/su14127215.
[15] 李璇, 李垚, 方炎明. 基于优化的MaxEnt 模型预测白栎在中国的潜在分布区[J]. 林业科学, 2018, 54(8): 153-164. DOI: 10.11707/j.1001-7488.20180817.
[16] 袁川, 谭露, 徐亮, 等. 地果花粉供应格局成因和适生区分析[J]. 生态学报, 2021, 41(6): 2384-2397. DOI: 10.5846/stxb202005181263.
[17] DARKWAH W K, KOOMSON D A, MIWORNUNYUIE N, et al. Review: phytochemistry and medicinal properties of Solanum torvum fruits[J]. All Life, 2020, 13(1): 498-506. DOI: 10.1080/26895293.2020.1817799.
[18] 李栋, 孙亮亮, 罗晓梅, 等. 水茄组织培养技术体系的建立[J]. 山西农业大学学报(自然科学版), 2019, 39(2): 69-74. DOI: 10.13842/j.cnki.issn1671-8151.201810063.
[19] 陆园园, 罗建光, 孔令义. 水茄的化学成分[J]. 中国天然药物, 2011, 9(1): 30-32. DOI: 10.3724/SP.J.1009.2011.00030.
[20] 许良政, 罗来辉, 李坤新, 等. 野生蔬菜水茄种子发芽特性的研究[J]. 种子, 2009, 28(8): 45-47. DOI: 10.16590/j.cnki.1001-4705.2009.08.083.
[21] 李诺, 廖仲英, 许良政, 等. 不同成熟度野生水茄果实的种子萌发差异研究[J]. 种子, 2018, 37(9): 65-68. DOI: 10.16590/j.cnki.1001-4705.2018.09.065.
[22] 赵金鹏, 王闫利, 陆兴利, 等. 软枣猕猴桃在中国的适生区分析及对未来气候变化的响应[J]. 中国生态农业学报(中英文), 2020, 28(10): 1523-1532. DOI: 10.13930/j.cnki.cjea.200244.
[23] PEARSON R G, RAXWORTHY C J, NAKAMURA M, et al. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar[J]. Journal of Biogeography, 2007, 34(1): 102-117. DOI: 10.1111/j.1365-2699.2006.01594.x.
[24] 刘攀峰, 王璐, 杜庆鑫, 等. 杜仲在我国的潜在适生区估计及其生态特征分析[J]. 生态学报, 2020, 40(16): 5674-5684. DOI: 10.5846/stxb201907091450.
[25] XIE C P, HUANG B Y, JIM C Y, et al. Predicting differential habitat suitability of Rhodomyrtus tomentosa under current and future climate scenarios in China[J]. Forest Ecology and Management, 2021, 501: 119696. DOI: 10.1016/j.foreco.2021.119696.
[26] 张晓玮, 蒋玉梅, 毕阳, 等. 基于MaxEnt 模型的中国沙棘潜在适宜分布区分析[J]. 生态学报, 2022, 42(4): 1420-1428. DOI: 10.5846/stxb202101260269.
[27] DAWSON T P, JACKSON S T, HOUSE J I, et al. Beyond predictions: Biodiversity conservation in a changing climate[J]. Science, 2011, 332(6025): 53-58. DOI: 10.1126/science.1200303.
[28] 刘婷, 曹家豪, 齐瑞, 等. 基于GIS和MaxEnt模型分析气候变化背景下紫果云杉的潜在分布区[J]. 西北植物学报, 2022, 42(3): 481-491. DOI: 10.7606/j.issn.1000-4025.2022.03.0481.
[29] YANG X Q, KUSHWAHA S P S, SARAN S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecological Engineering, 2013, 51: 83-87. DOI: 10.1016/j.ecoleng.2012.12.004.
[30] 曹雪萍, 王婧如, 鲁松松, 等. 气候变化情景下基于最大熵模型的青海云杉潜在分布格局模拟[J]. 生态学报, 2019, 39(14): 5232-5240. DOI: 10.5846/stxb201809151999.
[31] WANG G H, XIE C P, WEI L J, et al. Predicting suitable habitats for China’s endangered plant Handeliodendron bodinieri (H. Lév.) Rehder[J]. Diversity, 2023, 15(10): 1033. DOI: 10.3390/d15101033.
[32] KHANUM R, MUMTAZ A S, KUMAR S. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling[J]. Acta Oecologica, 2013, 49: 23-31. DOI: 10.1016/j.actao.2013.02.007.
[33] 王东升, 赵伟, 程蓓蓓, 等. 基于MaxEnt模型的中国山楂潜在适生区[J]. 林业科学, 2022, 58(7): 43-50. DOI: 10.11707/j.1001-7488.20220705.
[34] XU D P, ZHUO Z H, WANG R L, et al. Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling[J]. Global Ecology and Conservation, 2019, 19: e00691. DOI: 10.1016/j.gecco.2019.e00691.
[35] KHODOROVA N V, BOITEL-CONTI M. The role of temperature in the growth and flowering of geophytes[J]. Plants, 2013, 2(4): 699-711. DOI: 10.3390/plants2040699.
[36] ATKINSON C J, BRENNAN R M, JONES H G. Declining chilling and its impact on temperate perennial crops[J]. Environmental and Experimental Botany, 2013, 91: 48-62. DOI: 10.1016/j.envexpbot.2013.02.004.
[37] LADWIG L M, RATAJCZAK Z R, OCHELTREE T W, et al. Beyond Arctic and alpine: the influence of winter climate on temperate ecosystems[J]. Ecology, 2016, 97(2): 372-382. DOI: 10.1809/15-0153.1.
[38] GUAN L L, YANG Y X, JIANG P, et al. Potential distribution of Blumea balsamifera in China using MaxEnt and the ex situ conservation based on its effective components and fresh leaf yield[J]. Environmental Science and Pollution Research, 2022, 29(29): 44003-44019. DOI: 10.1007/s11356-022-18953-1.
[39] MEIER E S, LISCHKE H, SCHMATZ D R, et al. Climate, competition and connectivity affect future migration and ranges of European trees[J]. Global Ecology and Biogeography, 2012, 21(2): 164-178. DOI: 10.1111/j.1466-8238.2011.00669.x.
[1] 农小霞, 郁华英, 向盈盈, 杨盼宇, 张启伟. 基于MaxEnt模型的中国黄杉潜在适宜生境变化分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 215-225.
[2] 贾艳红, 苏筱茜, 李鹤冉. 1991—2020年南宁市气候变化特征分析[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 190-200.
[3] 张小丽, 陈泽柠, 武正军. 蜥蜴与气候变化的研究热点演变分析——基于Web of Science数据库[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 332-341.
[4] 朱婧, 刘鼎, 王珊, 黄祚水, 梁建宏. 土壤养分及其化学计量特征对微生物碳利用效率的影响机制[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 376-387.
[5] 李城恩, 潘晓映, 王美涵, 施建华. 基于区间型数据计量的我国粮食产量研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 206-215.
[6] 李建鸿, 蒙歆媛, 翟禄新, 王月. 1951—2006年广西极端连续降水的时空变化分析[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 187-196.
Viewed
Full text
191
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 191

  From Others local
  Times 23 168
  Rate 12% 88%

Abstract
77
Just accepted Online first Issue
0 0 77
  From Others local
  Times 64 13
  Rate 83% 17%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 朱格格, 黄安书, 覃盈盈. 基于Web of Science的国际红树林研究发展态势分析[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 1 -12 .
[2] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[3] 王淑颖, 卢宇翔, 董淑彤, 陈默, 康秉娅, 蒋长兰, 宿程远. 污水中抗生素抗性基因传播过程及控制技术研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 1 -15 .
[4] 钟俏, 陈生龙, 唐聪聪. 水凝胶技术在微藻采收中的应用:现状、挑战与发展分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 16 -29 .
[5] 翟思琪, 蔡文君, 朱苏, 李韩龙, 宋海亮, 杨小丽, 杨玉立. 汲取液溶质反向扩散与正渗透中膜污染的相互关系研究[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 30 -39 .
[6] 郑国权, 秦永丽, 汪晨祥, 葛仕佳, 闻倩敏, 蒋永荣. ABR硫酸盐还原体系分级沉淀酸性矿山废水中重金属及矿物形成[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 40 -52 .
[7] 刘洋, 张毅杰, 章延, 李玲, 孔祥铭, 李红. 饮用水处理中藻类混凝消除技术的现状与趋势——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 53 -66 .
[8] 田晟, 陈东. 基于深度强化学习的网联燃料电池混合动力汽车生态驾驶联合优化方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 67 -80 .
[9] 陈秀锋, 王成鑫, 赵凤阳, 杨凯, 谷可鑫. 改进DQN算法的单点交叉口信号控制方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 81 -88 .
[10] 李欣, 宁静. 基于时空特征融合的电力系统暂态稳定评估[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 89 -100 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发