Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 80-90.doi: 10.16088/j.issn.1001-6600.2022100804

Previous Articles     Next Articles

Lightweight Garbage Detection Method Based on Improved YOLOX

LI Yang1.2, GOU Gang1,2*   

  1. 1. State Key Laboratory of Public Big Data (Guizhou University), Guiyang Guizhou 550025, China;
    2. College of Computer Science and Technology, Guizhou University, Guiyang Guizhou 550025, China
  • Received:2022-10-08 Revised:2022-11-30 Online:2023-05-25 Published:2023-06-01

Abstract: Household garbage classification is an effective measure to protect the ecological environment and promote green and harmonious development. Aiming at the problems such as limited computing resources and memory, and difficulty in embedding heavyweight models into mobile devices, a lightweight garbage classification detection method based on improved YOLOX-tiny is proposed in this paper. Firstly, the original IoU loss function is replaced by EIoU, which can accelerate the convergence and improve the detection accuracy. Secondly, the attention mechanism CBAM is introduced into the neck network to redistribute the weight of different channels to obtain more shallow fine-grained features and deep semantic information. Finally, the GhostBottleneck module is used to replace the CSP module in the feature picking network, which tends to retain more edge information, reduce the number of parameters, and lighten the model. Experimental results on Huawei cloud garbage dataset show that compared with YOLOX-tiny, the number of parameters of the improved algorithm is reduced to 87.97% of the original, the accuracy is increased by 0.3%, and the experimental effect on TrashNet dataset is increased by 0.36%, which proves the effectiveness of the proposed algorithm. The algorithm is conducive to the use of embedded mobile devices and has certain practical value.

Key words: garbage classification, YOLOX, lightweight network, EIoU, CBAM, GhostBottleneck

CLC Number:  TP391.41
[1] 国家统计局. 中国统计年鉴2021[M]. 北京: 中国统计出版社, 2021.
[2] 张涛, 白冬锐, 孙煜璨, 等. 全过程管理视角的上海市垃圾分类回顾与展望[J]. 环境工程, 2022, 40(3): 173-180, 146. DOI: 10.13205/j.hjgc.202203026.
[3] 王洁, 顾卫华, 陈泽辉, 等. 生活垃圾分类实践效果、问题与对策分析: 以湖州市织里镇为例[J]. 环境工程, 2022, 40(3): 188-193. DOI: 10.13205/j.hjgc.202203028.
[4] 贵阳市城镇生活垃圾分类管理条例[N]. 贵阳日报, 2022-08-16(4).
[5] 李永杰, 周桂红, 刘博. 基于YOLOv3模型的人脸检测与头部姿态估计融合算法[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 95-103. DOI: 10.16088/j.issn.1001-6600.2021070911.
[6] 刘英璇, 伍锡如, 雪刚刚. 基于深度学习的道路交通标志多目标实时检测[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 96-106. DOI: 10.16088/j.issn.1001-6600.2020.02.011.
[7] 吕方方, 陈光喜, 刘家畅,等. 基于卷积神经网络的小目标检测改进算法[J]. 桂林电子科技大学学报, 2021, 41(5): 368-374. DOI: 10.16725/j.cnki.cn45-1351/tn.2021.05.005.
[8] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2014: 580-587. DOI: 10.1109/CVPR.2014.81.
[9] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2015: 1440-1448. DOI: 10.1109/ICCV.2015.169.
[10] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031.
[11] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Computer Vision-ECCV2016: LNCS Volume 9905. Cham: Springer, 2016: 21-37. DOI: 10.1007/978-3-319-46448-0_2.
[12] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 779-788. DOI: 10.1109/CVPR.2016.91.
[13] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 6517-6525. DOI: 10.1109/CVPR.2017.690.
[14] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2022-10-08]. https://arxiv.org/abs/1804.02767. DOI: 10.48550/arXiv.1804.02767.
[15] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. (2021-08-06)[2022-10-08]. https://arxiv.org/abs/2107.08430. DOI: 10.48550/arXiv.2107.08430.
[16] 陈智超, 焦海宁, 杨杰, 等. 基于改进MobileNet v2的垃圾图像分类算法[J]. 浙江大学学报(工学版), 2021, 55(8): 1490-1499. DOI: 10.3785/j.issn.1008-973X.2021.08.010.
[17] 高明, 陈玉涵, 张泽慧, 等. 基于新型空间注意力机制和迁移学习的垃圾图像分类算法[J]. 系统工程理论与实践, 2021, 41(2): 498-512. DOI: 10.12011/SETP2020-1645.
[18] 袁建野, 南新元, 蔡鑫, 等. 基于轻量级残差网路的垃圾图片分类方法[J]. 环境工程, 2021, 39(2): 110-115. DOI: 10.13205/j.hjgc.202102017.
[19] 罗安能, 万海斌, 司志巍, 等. 基于改进YOLOv5s的可回收垃圾的检测算法[J/OL]. 激光与光电子学进展: 1-15[2022-10-08]. http://kns.cnki.net/kcms/detail/31.1690.tn.20220713.1957.657.html.
[20] 吕东, 王萍, 王宇航, 等. 固体金属垃圾分类中基于深度学习方法的研究[J]. 广西科技大学学报, 2021, 32(4): 104-110, 126. DOI: 10.16375/j.cnki.cn45-1395/t.2021.04.016.
[21] YU J H, JIANG Y N, WANG Z Y, et al. Unitbox: an advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia. New York, NY: Association for Computing Machinery, 2016: 516-520. DOI: 10.1145/2964284.2967274.
[22] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 658-666. DOI: 10.1109/CVPR.2019.00075.
[23] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000. DOI: 10.1609/aaai.v34i07.6999.
[24] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 7132-7141. DOI: 10.1109/CVPR.2018.00745.
[25] WOO S H, PARK J C, LEE J Y, et al. CBAM: convolutional block attention module[C]//Computer Vision-ECCV 2018: LNCS Volume 11211. Cham: Springer Nature Switzerland AG, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1.
[26] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 1577-1586. DOI: 10.1109/CVPR42600.2020.00165.
[27] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 1314-1324. DOI: 10.1109/ICCV.2019.00140.
[28] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IoU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157. DOI: 10.1016/j.neucom.2022.07.042.
[1] LIANG Zhenfeng, XIA Haiying. A Fast Stitching Algorithm for UAV Aerial Images [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 41-52.
[2] HAN Xinyue, DENG Changzheng, FU Tian, XIA Pengyu, LIU Xuan. Transient Electromagnetic Defect Identification of Grounding Grid Based on MWOA-Elman Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 53-66.
[3] QIAN Youwei, HE Fuyun, WEI Yan, FENG Huiling, HU Cong. Neuron Image Segmentation Based on Dual Coding Path Fusion and Bidirectional ConvLSTM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 67-79.
[4] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76-85.
[5] WEI Mingjun, ZHOU Taiyu, JI Zhanlin, ZHANG Xinnan. Detection Method of Mask Wearing in Public Places Based on YOLOv3 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 76-86.
[6] NIU Xuede, GAO Bingpeng, REN Rongrong, XU Mingming. Crop Pestsand Diseases Identification and Android Application Based on Lightweight CNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 59-68.
[7] YU Mengzhu, TANG Zhenjun. Survey of Video Hash Research Based on Hand-craft Features [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 72-89.
[8] LIANG Qihua, HU Xiantao, ZHONG Bineng, YU Feng, LI Xianxian. Research Progress of Target Tracking Algorithm Based on Siamese Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 90-103.
[9] LI Zhixin, SU Qiang. Knowledge-aided Image Captioning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 418-432.
[10] WAN Liming, ZHANG Xiaoqian, LIU Zhigui, SONG Lin, ZHOU Ying, LI Li. CT Image Segmentation of UNet Pulmonary Nodules Based on Efficient Channel Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 66-75.
[11] ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87.
[12] LI Yongjie, ZHOU Guihong, LIU Bo. Fusion Algorithm of Face Detection and Head Pose Estimation Based on YOLOv3 Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 95-103.
[13] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[14] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34-46.
[15] ZHANG Canlong, LI Yanru, LI Zhixin, WANG Zhiwen. Block Target Tracking Based on Kernel Correlation Filter and Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 12-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Xu, LIANG Chengqin. Spectral Features, α-glucosidase Inhibitory Activities, Antioxidant Activities and Quantitative Determination of Mogroside ⅡA of Siraitia grosvenorii[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 132 -141 .
[2] LIU Jing, BIAN Xun. Characteristics of the Orthoptera Mitogenome and Its Application[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 17 -28 .
[3] CHENG Rui, HE Mingxian, ZHONG Chunying, LUO Shuyi, WU Zhengjun. Comparison of Swimming Ability between Wild and Captive Breeding Shinisaurus crocodilurus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 79 -86 .
[4] WANG Su, FAN Yixing, GUO Jiafeng, ZHANG Ruqing, CHENG Xueqi. Dynamic Learning Method of Neural Machine Translation Based on Sample Difficulty[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 13 -20 .
[5] XIE Donglin, DENG Guohe. Pricing Forward-start Power Options with Product of Two Assets in a Stochastic Interest Rate and Jump Diffusion Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 158 -172 .
[6] PANG Bingbing, YE Fengcai, LI Yuyan, SHANG Changhua. Research Progress on Carotenoid Biosynthesis and Metabolic Regulation in Microalgae[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 13 -23 .
[7] TIAN Sheng, SONG Lin. Traffic Sign Recognition Based on CNN and Bagging Integration[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 35 -46 .
[8] ZHONG Hui, SONG Shuxiang, CEN Mingcan, CAI Chaobo, JIANG Pinqun, LIU Zhenyu. Differential N-path Filter Based on Sampling Calculation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 58 -67 .
[9] WANG Zhenfeng, LIU Yan, WANG Xinke, LIN Sainan, LIU Xingzhao. Temporal and Spatial Evolution and Driving Forces of Green Space in Fujian, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 227 -246 .
[10] HE Qing, LIU Jian, WEI Lianfu. Single-Photon Detectors as the Physical Limit Detections of Weak Electromagnetic Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 1 -23 .