Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 67-79.doi: 10.16088/j.issn.1001-6600.2022101301
Previous Articles Next Articles
QIAN Youwei1, HE Fuyun1,2*, WEI Yan1, FENG Huiling1, HU Cong2
[1] BOUÇA-MACHADO R, TITOVA N, CHAUDHURI K R, et al. Palliative care for patients and families with Parkinson's disease[J]. International Review of Neurobiology, 2017, 132: 475-509. DOI: 10.1016/bs.irn.2017.02.017. [2] HU J M, LIU S Y. Modulating intracellular oxidative stress via engineered nanotherapeutics[J]. Journal of Controlled Release, 2020, 319: 333-343. DOI: 10.1016/j.jconrel.2019.12.040. [3] ZHANG Q R, ZHANG M, CHEN T H, et al. Recent advances in convolutional neural network acceleration[J]. Neurocomputing, 2019, 323: 37-51. DOI: 10.1016/j.neucom.2018.09.038. [4] LU Y, LU G M, LI J X, et al. High-parameter-efficiency convolutional neural networks[J]. Neural Computing and Applications, 2020, 32(14): 10633-10644. DOI: 10.1007/s00521-019-04596-w. [5] 张鑫, 姚庆安, 赵健, 等. 全卷积神经网络图像语义分割方法综述[J]. 计算机工程与应用, 2022, 58(8): 45-57. DOI: 10.3778/j.issn.1002-8331.2109-0091. [6] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. DOI: 10.1109/tpami.2016.2572683. [7] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: LNCS Volume 9351. Cham: Springer, 2015: 234-241. DOI: 10.1007/978-3-319-24574-4_28. [8] ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: LNCS Volume 11045. Cham: Springer, 2018: 3-11. DOI: 10.1007/978-3-030-00889-5_1. [9] 吴相远, 申诺, 蒙玉洪, 等.基于U-Net++的人体脊椎MRI图像识别[J]. 桂林电子科技大学学报, 2022, 42(1): 36-42. DOI: 10.16725/j.cnki.cn45-1351/tn.2022.01.004. [10] 徐思则, 刘威. 基于UNet网络的乳腺癌肿瘤细胞图像分割[J]. 电子设计工程, 2022, 30(12): 63-66, 73. DOI: 10.14022/j.issn1674-6236.2022.12.013. [11] 张秦瑞, 林国军, 朱晏梅. 改进SegNet网络对遥感图像的语义分割[J]. 宜宾学院学报, 2022, 22(6): 37-41. DOI: 10.19504/j.cnki.issn1671-5365.2022.06.08. [12] 雷竞雄. 基于改进的SegNet分割网络的遥感图像分割[J]. 理论数学, 2022, 12(11): 1875-1881. DOI: 10.12677/PM.2022.1211201. [13] GAO S H, CHENG M M, ZHAO K, et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662. DOI: 10.1109/TPAMI.2019.2938758. [14] 高慧, 阎晓东, 张衡, 等. 基于Res2Net的多尺度遥感影像海陆分割方法[J]. 光学学报, 2022, 42(18): 147-154. DOI: 10.3788/AOS202242.1828004. [15] 刘尚旺, 张杨杨, 蔡同波, 等. 基于改进PSPnet的无人机农田场景语义分割[J]. 灌溉排水学报, 2022, 41(4): 101-108. DOI: 10.13522/j.cnki.ggps.2021406. [16] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 6230-6239. DOI: 10.1109/CVPR.2017. 660. [17] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. DOI: 10.1109/TPAMI.2017.2699184. [18] LI J, OU X, SHEN N Y, et al. Study on strategy of CT image sequence segmentation for liver and tumor based on U-Net and Bi-ConvLSTM[J]. Expert Systems with Applications, 2021, 180: 115008. DOI: 10.1016/j.eswa.2021.115008. [19] 司明明, 陈玮, 胡春燕, 等. 融合Resnet50和U-Net的眼底彩色血管图像分割[J]. 电子科技, 2021, 34(8): 19-24. DOI: 10.16180/j.cnki.issn1007-7820.2021.08.004. [20] 秦志远, 朱峻泷, 张琛, 等. 基于ResNet34-UNet的静脉超声图像分割方法研究[J]. 临床超声医学杂志, 2022, 24(1): 74-78. DOI: 10.16245/j.cnki.issn1008-6978.2022.01.001. [21] 王卓英, 童基均, 蒋路茸, 等. 基于U-Dense-net网络的DSA图像冠状动脉血管分割[J]. 浙江理工大学学报(自然科学版), 2021, 45(3): 390-399. DOI: 10.3969/j.issn.1673-3851(n).2021.03.013. [22] 魏榕剑, 邵剑飞. 基于改进Dense Net网络的肺炎X光图像识别算法[J]. 电视技术, 2021, 45(6): 140-143. DOI: 10.16280/j.videoe.2021.06.040. [23] OFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille: PMLR, 2015: 448-456. [24] CHENG J L, TIAN S W, YU L, et al. ResGANet: residual group attention network for medical image classification and segmentation[J]. Medical Image Analysis, 2022, 76: 102313. DOI: 10.1016/j.media.2021.102313. [25] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 2261-2269. DOI: 10.1109/CVPR.2017.243. [26] DUTTA K. Densely connected recurrent residual (dense R2UNet) convolutional neural network for segmentation of lung CT images[EB/OL]. (2021-02-01)[2022-10-13]. https://arxiv.org/abs/2102.00663. DOI: 10.48550/arXiv.2102.00663. [27] ZHOU E J, XU X, XU B M, et al. An enhancement model based on dense atrous and inception convolution for image semantic segmentation[J]. Applied Intelligence,2023,53(5):5519-5531. DOI: 10.1007/s10489-022-03448-w. [28] YANG B, CHEN W X, LUO H Q, et al. Neuron image segmentation via learning deep features and enhancing weak neuronal structures[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(5): 1634-1645. DOI: 10.1109/jbhi.2020.3017540. [29] YANG B, LIU M, WANG Y N, et al. Structure-guided segmentation for 3D neuron reconstruction[J]. IEEE Transactions on Medical Imaging, 2021, 41(4): 903-914. DOI: 10.1109/tmi.2021.3125777. [30] JIANG Y, CHEN W X, LIU M, et al. 3D neuron microscopy image segmentation via the ray-shooting model and a DC-BLSTM network[J]. IEEE Transactions on Medical Imaging, 2021, 40(1): 26-37. DOI: 10.1109/tmi.2020.3021493. [31] WANG H, ZHANG D H, SONG Y, et al. Segmenting neuronal structure in 3D optical microscope images via knowledge distillation with teacher-student network[C]//2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). Piscataway NJ: IEEE, 2019: 228-231. DOI: 10.1109/ISBI.2019.8759326. [32] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. DOI: 10.1109/tpami.2019.2913372. [33] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL]. (2014-12-22)[2022-10-13]. https://arxiv.org/abs/1412.7062v1. DOI: 10.48550/arXiv.1412.7062. [34] WANG Z M, WANG J S, YANG K, et al. Semantic segmentation of high-resolution remote sensing images based on a class feature attention mechanism fused with Deeplabv3+[J]. Computers & Geosciences, 2022, 158: 104969. DOI: 10.1016/j.cageo.2021.104969. [35] CARDONA A, SAALFELD S, PREIBISCH S, et al. An integrated micro-and macro architectural analysis of the drosophila brain by computer-assisted serial section electron microscopy[J]. PLoS Biology, 2010, 8(10): e1000502. DOI: 10.1371/journal.pbio.1000502. [36] LEE K, ZUNG J, LI P, et al. Superhuman accuracy on the SNEMI3D connectomics challenge[EB/OL]. (2017-05-31)[2022-10-13]. https://arxiv.org/abs/1706.00120v1. DOI: 10.48550/arXiv.1706.00120. [37] 丁才富, 杨晨, 纪秋浪, 等. MCA-Net: 多尺度综合注意力CNN在医学图像分割中的应用[J]. 微电子学与计算机, 2022, 39(3): 71-77. DOI: 10.19304/j.issn1000-7180.2021.0950. [38] 李玉慧, 梁创学, 李军. 基于Group-Depth U-Net的电子显微图像中神经元结构分割[J]. 中国医学物理学杂志, 2020, 37(6): 720-725. DOI: 10.3969/j.issn.1005-202X.2020.06.012. [39] ROY S, CHAKRABORTY A. Semantic segmentation of highly class imbalanced fully labeled 3D volumetric biomedical images and unsupervised domain adaptation of the pre-trained segmentation network to segment another fully unlabelled biomedical 3D image stack[EB/OL]. (2020-03-13)[2022-10-13]. https://arxiv.org/abs/2004.02748. DOI: 10.48550/arXiv.2004.02748. [40] URAKUBO H, BULLMANN T, KUBOTA Y, et al. UNI-EM: an environment for deep neural network-based automated segmentation of neuronal electron microscopic images[J]. Scientific Reports, 2019, 9: 19413. DOI: 10.1038/s41598-019-55431-0. |
[1] | MA Jun. Dynamics and Model Approach for Functional Neurons [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 307-323. |
[2] | WAN Liming, ZHANG Xiaoqian, LIU Zhigui, SONG Lin, ZHOU Ying, LI Li. CT Image Segmentation of UNet Pulmonary Nodules Based on Efficient Channel Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 66-75. |
[3] | WANG Xun, LI Tinghui, PAN Xiao, TIAN Yu. Image Segmentation Method Based on Improved Fuzzy C-means Clustering and Otsu Maximum Variance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 68-73. |
[4] | XIA Haiying. Cervical Cell Images Segmentation Based on Improved SLIC Region Merging [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 93-100. |
[5] | TANG Zong-xiang, WU Guan-yi. Progress in Neuronal Circuits and Transmission of Itch in the Spinal Cord [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 236-243. |
[6] | LI Jing-wen, ZHANG Zi-ping, GUO Wei-li, SU Hao, LUO Wen-bing. A High Resolution Image Segmentation Method of a Combination ofWatershed and Multi-scale [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 40-44. |
[7] | ZHANG Xin-ming, ZHANG Yu-shan, LI Zhen-yun. Image Thresholding Method Based on Improved Moment Preserving [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 185-190. |
[8] | FENG Jia-li, YANG Run-ze. Application of Attribute Theory in Image Segment [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 191-194. |
|