Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 53-66.doi: 10.16088/j.issn.1001-6600.2022061901

Previous Articles     Next Articles

Transient Electromagnetic Defect Identification of Grounding Grid Based on MWOA-Elman Neural Network

HAN Xinyue1,2, DENG Changzheng1,2*, FU Tian1,2, XIA Pengyu1,2, LIU Xuan1,2   

  1. 1. College of Electrical and New Energy, China Three Gorges University, Yichang Hubei 443002, China;
    2. Hubei Provincial Collaboration Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang Hubei 443002, China
  • Received:2022-06-19 Revised:2022-08-11 Online:2023-05-25 Published:2023-06-01

Abstract: In order to improve the limitations of the current transient electromagnetic detection system and improve the efficiency and accuracy of ground grid defect identification, a MWOA-Elman neural network is proposed to complete the transformation process from sampling to imaging, quickly realize the apparent resistivity imaging, and accurately identify different defects of the ground grid. Firstly, the transient field parameter sample set of grounding grid is completed through theoretical calculation, and the single mapping relation of Elman neural network is constructed. Secondly, the modified Whale algorithm is improved around convergence factor, adaptive weight and threshold, and the weight and threshold of Elman neural network are optimized by modified whale optimization algorithm (MWOA). The test results show that the MWOA-Elman neural network converges at the 854 step, and the four error indexes MAE, MSE, RMSE, MAPE are 0.103 51, 0.040 09, 0.126 64 and 0.333 52%, respectively. The identification accuracy of grounding grid defects is 99.678%, and the identification efficiency and accuracy are better than that of other models. Finally, the imaging results of three typical defect locations of 3×3 grounding grid can verify the effectiveness of MWOA-Elman neural network applied to defect identification of grounding grid, and provide reference for intelligent algorithm embedded in transient electromagnetic detection system.

Key words: ground grid defect, transient field parameters, apparent resistivity imaging, elman neural network, modified whale optimization algorithm

CLC Number:  TP391.41;TM862;TP183
[1] DAWALIBI F. Electromagnetic fields generated by overhead and buried short conductors part 1-single conductor[J]. IEEE Transactions on Power Delivery, 1986, 1(4): 105-111. DOI: 10.1109/TPWRD.1986.4308036.
[2] 张树亮, 刘东亮, 徐洪福, 等. 基于磁场分布特性的接地网腐蚀断点检测方法研究[J]. 电瓷避雷器, 2021(1): 51-55,62. DOI: 10.16188/j.isa.1003-8337.2021.01.008.
[3] 付志红, 余慈拱, 侯兴哲, 等. 瞬变电磁法视电阻率成像的接地网断点诊断方法[J]. 电工技术学报, 2014, 29(9): 253-259. DOI: 10.19595/j.cnki.1000-6753.tces.2014.09.036.
[4] 余慈拱. 电力接地网缺陷的瞬变电磁成像诊断方法研究[D]. 重庆:重庆大学, 2017.
[5] YU C G, FU Z H, WU G L et al. Configuration detection of substation grounding grid using transient electromagnetic method[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6475-6483. DOI: 10.1109/TIE.2017.2682033.
[6] 栾卉, 徐畅, 刘南南, 等. 基于COMSOL Multiphysics的瞬变电磁法接地网故障诊断仿真研究[J]. 实验室研究与探索, 2017, 36(1): 108-111. DOI: 103969/j.issn.1006-7167.2017.01.026.
[7] 陈广. 基于神经网络的瞬变电磁快速成像方法研究[D]. 重庆:重庆大学, 2014.
[8] 秦善强, 付志红, 朱学贵, 等. 遗传神经网络的瞬变电磁视电阻率求解算法[J]. 电工技术学报, 2017, 32(12): 146-154,250. DOI: 10.19595/j.cnki.1000-6753.tces.2017.12.015.
[9] 秦善强. 瞬变电磁法的神经网络快速成像及其在接地网检测中的应用[D]. 重庆: 重庆大学, 2019.
[10] QIN S Q, WANG Y, XU Z Y, et al. Fast resistivity imaging of transient electromagnetic using ANN[J]. IEEE Geoscience and Remote Sensing Letters, 2019,16(9):1373-1377. DOI: 10.1109/LGRS.2019.2900992.
[11] 张娜, 任强, 刘广忱, 等. 基于VMD-GWO-ELMAN的光伏功率短期预测方法[J]. 中国电力, 2022, 55(5): 57-65.
[12] 王明馨,郑瑛楠,邓卓夫.基于BFA-Elman的电力负荷可靠性预测系统设计[J].电子设计工程,2022,30(6):118-121,126. DOI: 10.14022/j.issn1674-6236.2022.06.026.
[13] 包满.基于Elman神经网络模型的短期电力负荷预测模型[J].电子设计工程,2022,30(1):121-126. DOI: 10.14022/j.issn1674-6236.2022.01.026.
[14] 段巍, 韩旭, 马良玉, 等. 基于Elman神经网络的风力机风轮子系统故障预警[J]. 太阳能学报, 2021, 42(12): 157-162. DOI: 10.19912/j.0254-0096.tynxb.2019-1427.
[15] 赵俊浩, 吴杰康, 张文杰, 等. 基于布谷鸟-Elman算法的光伏发电预测[J]. 电力工程技术, 2020, 39(2): 81-88. DOI: 10.12158/j.2096-3203.2020.02.012.
[16] 张莹, 苏建徽, 汪海宁, 等. 基于改进磷虾群算法优化Elman神经网络的PEMFC电堆建模[J]. 电测与仪表, 2021,58(3): 23-27. DOI: 10.19753/j.issn1001-1390.2021.03.004.
[17] 武泽权, 牟永敏. 一种改进的鲸鱼优化算法[J]. 计算机应用研究, 2020, 37(12): 3618-3621. DOI: 10.19734/j.issn.1001-3695.2019.09.0536.
[18] 徐航, 张达敏, 王依柔, 等. 混合策略改进鲸鱼优化算法[J]. 计算机工程与设计, 2020, 41(12): 3397-3404. DOI: 10.16208/j.issn1000-7024.2020.12.15.
[19] 汤安迪, 韩统, 徐登武, 等. 混沌多精英鲸鱼优化算法[J]. 北京航空航天大学学报, 2021, 47(7): 1481-1494. DOI: 10.13700/j.bh.1001-5965.2020.0585.
[20] 徐正玉, 付能翼, 周洁, 等. 瞬变电磁法非线性优化反演算法对比[J]. 吉林大学学报(地球科学版), 2022, 52(3): 744-753. DOI: 10.13278/j.cnki.jjuese.20210253.
[21] 何一鸣, 薛国强, 赵炀. 基于量子行为粒子群算法的航空瞬变电磁拟二维反演技术[J]. 地球科学与环境学报, 2020, 42(6): 722-730. DOI: 10.19814/j.jese.2020.09007.
[22] 王仕兴, 易国财, 王绪本, 等. 基于分段二分搜索算法的半航空瞬变电磁电导率深度快速成像方法研究[J]. 地球物理学进展, 2021, 36(3): 1317-1324. DOI: 10.6038/pg2021EE0304.
[23] 王培培. 地下金属物体探测及成像系统设计[D]. 成都: 成都理工大学, 2014.
[24] 吴牧阳. 接地网腐蚀的瞬变电磁诊断方法研究[D]. 重庆: 重庆大学, 2019.
[25] 王若冰. 基于改进LeNet-5网络的瞬变电磁法接地网腐蚀程度识别方法研究[D]. 长春: 吉林大学, 2020.
[26] 白登海, MEJU M A, 卢健, 等. 时间域瞬变电磁法中心方式全程视电阻率的数值计算[J]. 地球物理学报, 2003,46(5): 697-704. DOI: 10.3321/j.issn:0001-5733.2003.05.018.
[27] NABIGHIAN M N. Quasi-static transient response of a conducting half-space; an approximate representation[J]. Geophysics, 1979, 44(10): 1700-1705. DOI: 10.11090/1.1440931.
[28] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95:51-67. DOI: 10.1016/j.advengsoft.2016.01.008.
[1] LIANG Zhenfeng, XIA Haiying. A Fast Stitching Algorithm for UAV Aerial Images [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 41-52.
[2] QIAN Youwei, HE Fuyun, WEI Yan, FENG Huiling, HU Cong. Neuron Image Segmentation Based on Dual Coding Path Fusion and Bidirectional ConvLSTM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 67-79.
[3] LI Yang, GOU Gang. Lightweight Garbage Detection Method Based on Improved YOLOX [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 80-90.
[4] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76-85.
[5] WEI Mingjun, ZHOU Taiyu, JI Zhanlin, ZHANG Xinnan. Detection Method of Mask Wearing in Public Places Based on YOLOv3 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 76-86.
[6] NIU Xuede, GAO Bingpeng, REN Rongrong, XU Mingming. Crop Pestsand Diseases Identification and Android Application Based on Lightweight CNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 59-68.
[7] YU Mengzhu, TANG Zhenjun. Survey of Video Hash Research Based on Hand-craft Features [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 72-89.
[8] LIANG Qihua, HU Xiantao, ZHONG Bineng, YU Feng, LI Xianxian. Research Progress of Target Tracking Algorithm Based on Siamese Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 90-103.
[9] LI Zhixin, SU Qiang. Knowledge-aided Image Captioning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 418-432.
[10] WAN Liming, ZHANG Xiaoqian, LIU Zhigui, SONG Lin, ZHOU Ying, LI Li. CT Image Segmentation of UNet Pulmonary Nodules Based on Efficient Channel Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 66-75.
[11] ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87.
[12] LI Yongjie, ZHOU Guihong, LIU Bo. Fusion Algorithm of Face Detection and Head Pose Estimation Based on YOLOv3 Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 95-103.
[13] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[14] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34-46.
[15] ZHANG Canlong, LI Yanru, LI Zhixin, WANG Zhiwen. Block Target Tracking Based on Kernel Correlation Filter and Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 12-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Zhu,TIAN Manman,TAN Qiming, CHEN Zhen, WANG Qiuping, HE Jun. Determination of Ginkgolides in Yinlan Tongluo Oral Liquid by HPLC-RID[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 87 -92 .
[2] SONG Jun, HAN Xiao-yu, HUANG Yu, HUANG Ting-lei, FU Kun. A Method for Entity-Oriented Timeline Summarization[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 36 -41 .
[3] XU Jiu-cheng, LI Xiao-yan, LI Shuang-qun, ZHANG Ling-jun. Feature Images Retrieval Method of Tolerance Granular-basedMulti-level Texture[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 186 -187 .
[4] RAN Hao, ZHOU Shan-yi. Checklist of Chinese Ants: the Formicomorph Subfamilies(Hymenoptera:Formicidae)(Ⅰ)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 65 -73 .
[5] LIU Jing, BIAN Xun. Characteristics of the Orthoptera Mitogenome and Its Application[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 17 -28 .
[6] XU Guoliang. Seven New Records of Ferns from Guangdong, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 114 -118 .
[7] WANG Su, FAN Yixing, GUO Jiafeng, ZHANG Ruqing, CHENG Xueqi. Dynamic Learning Method of Neural Machine Translation Based on Sample Difficulty[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 13 -20 .
[8] YAN Sha. Global Existence of Solutions for a Three Species Predator-prey Model with Cross-diffusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 125 -131 .
[9] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134 -146 .
[10] XIE Donglin, DENG Guohe. Pricing Forward-start Power Options with Product of Two Assets in a Stochastic Interest Rate and Jump Diffusion Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 158 -172 .