Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 90-103.doi: 10.16088/j.issn.1001-6600.2022022501

Previous Articles     Next Articles

Research Progress of Target Tracking Algorithm Based on Siamese Network

LIANG Qihua1, HU Xiantao1, ZHONG Bineng1*, YU Feng1,2, LI Xianxian1   

  1. 1. Guangxi Key Laboratory of Multi-Source Information Mining and Security (Guangxi Normal University), Guilin Guangxi 541004, China;
    2. Key Laboratory of Computer Network and Information Integration, Southeast University, Nanjing Jiangsu 211189, China
  • Received:2022-02-25 Revised:2022-05-06 Online:2022-09-25 Published:2022-10-18

Abstract: Target tracking is one of the core basic research issues in the field of computer vision. Its performance can cooperate with the analysis and research of high-level video applications, which has important theoretical value, extensive practical value and interdisciplinary. Therefore, it has become the focus of academia, industry and national strategy. Due to the high complexity and strong interference of the tracking scene, the diversity of target apparent changes and multi-modal information fusion, the tracker needs to balance the performance measurement indicators such as robustness, accuracy and real-time. At present, a lot of work has been done to solve the challenges in the field of target tracking from different perspectives, but under the measurement of multi-dimensional performance indicators, it still can not solve the tracking problem in complex scenes. Through the research of target tracking algorithm based on Siamese network, this paper reviews the current development status of the field, discusses the existing challenges and looks forward to the research direction worthy of attention in the future, so as to provide a reference for the future research work in this field.

Key words: computer vision, target tracking, video application and analysis, multimodal, siamese network

CLC Number: 

  • TP391.41
[1]陈云芳, 吴懿, 张伟. 基于孪生网络结构的目标跟踪算法综述[J]. 计算机工程与应用, 2020, 56(6): 10-18. DOI: 10.3778/j.issn.1002-8331.1911-0127.
[2]高文, 朱明, 贺柏根, 等. 目标跟踪技术综述[J]. 中国光学, 2014, 7(3): 365-375. DOI: 10.3788/CO.20140703.0365.
[3]葛宝义, 左宪章, 胡永江. 视觉目标跟踪方法研究综述[J]. 中国图象图形学报, 2018, 23(8): 1091-1107. DOI: 10.11834/jig.170604.
[4]朱强, 王超毅, 张吉庆, 等. 基于事件相机的无人机目标跟踪算法[J]. 浙江大学学报(理学版), 2022, 49(1): 10-18. DOI: 10.3785/j.issn.1008-9497.2022.01.002.
[5]管皓, 薛向阳, 安志勇. 深度学习在视频目标跟踪中的应用进展与展望[J]. 自动化学报, 2016, 42(6): 834-847. DOI: 10.16383/j.aas.2016.c150705.
[6]KRISTAN M, LEONARDIS A, MATAS J, et al. The sixth visual object tracking VOT2018 challenge results[C]// Computer Vision-ECCV 2018 Workshops: LNCS Volume 11129. Cham: Springer, 2019: 3-53. DOI: 10.1007/978-3-030-11009-3_1.
[7]WU Y, LIM J W, YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848. DOI: 10.1109/TPAMI.2014.2388226.
[8]KRISTAN M, MATAS J, LEONARDIS A, et al. The seventh visual object tracking VOT2019 challenge results[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Los Alamitos, CA: IEEE Computer Society, 2019: 2206-2241. DOI: 10.1109/ICCVW.2019.00276.
[9]MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for UAV tracking[C]// Computer Vision-ECCV 2016: LNCS Volume 11129. Cham: Springer, 2016: 445-461. DOI: 10.1007/978-3-319-46448-0_27.
[10]HUANG L H, ZHAO X, HUANG K Q. GOT-10k: a large high-diversity benchmark for generic object tracking in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1562-1577. DOI: 10.1109/TPAMI. 2019.2957464.
[11]FAN H, LIN L T, YANG F, et al.LaSOT: a high-quality benchmark for Large-Scale single object tracking[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 5369-5378. DOI: 10.1109/CVPR.2019.00552.
[12]VALMADRE J, BERTINETTO L, HENRIQUES J F, et al. Long-term tracking in the wild: a benchmark[C]// Computer Vision-ECCV 2018: LNCS Volume 11207. Cham: Springer, 2018: 692-707. DOI: 10.1007/978-3-030-01219-9_41.
[13]MOUDGIL A, GANDHI V. Long-term visual object tracking benchmark[C]// Computer Vision-ACCV 2018: LNCS Volume 11362. Cham: Springer, 2019: 629-645. DOI: 10.1007/978-3-030-20890-5_40.
[14]REAL E, SHLENS J, MAZZOCCHI S, et al. YouTube-BoundingBoxes: a large high-precision human-annotated data set for object detection in video[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 7464-7473. DOI: 10.1109/CVPR.2017.789.
[15]CHEN Z D, ZHONG B N, LI G R, et al. Siamese box adaptive network for visual tracking[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 6667-6676. DOI: 10.1109/CVPR42600.2020.00670.
[16]XU Y D, WANG Z Y, LI Z X, et al.SiamFC++: towards robust and accurate visual tracking with target estimation guidelines[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12549-12556. DOI: 10.1609/aaai.v34i07.6944.
[17]GUO Q, FENG W, ZHOU C, et al. Learning dynamic Siamese network for visual object tracking[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2017: 1781-1789. DOI: 10.1109/ICCV.2017.196.
[18]BHAT G, DANELLJAN M, VAN GOOL L, et al. Learning discriminative model prediction for tracking[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 6181-6190. DOI: 10.1109/ICCV.2019.00628.
[19]CHEN X, YAN B, ZHU J W, et al. Transformer tracking[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 8122-8131. DOI: 10.1109/CVPR46437.2021.00803.
[20]YAN B, PENG H W, FU J L, et al. Learningspatio-temporal transformer for visual tracking[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2021: 10428-10437. DOI: 10.1109/ICCV48922.2021.01028.
[21]YAN B, PENG H W, WU K, et al.LightTrack: finding lightweight neural networks for object tracking via one-shot architecture search[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 15175-15184. DOI: 10.1109/CVPR46437.2021.01493.
[22]BORSUK V, VEI R, KUPYN O, et al. FEAR: fast, efficient, accurate and robust visualtracker[EB/OL]. (2021-12-15) [2022-02-25]. https://arxiv.org/abs/2112.07957. DOI: 10.48550/arXiv.2112.07957.
[23]FENG Q, ABLAVSKY V, BAI Q X, et al. Siamese natural language tracker: tracking by natural language descriptions with Siamese trackers[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 5847-5856. DOI: 10.1109/CVPR46437.2021.00579.
[24]DAI K N, ZHANG Y H, WANG D, et al. High-performance long-term tracking with meta-updater[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 6297-6306. DOI: 10.1109/CVPR42600.2020.00633.
[25]GUO D Y, WANG J, CUI Y, et al.SiamCAR: Siamese fully convolutional classification and regression for visual tracking[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 6268-6276. DOI: 10.1109/CVPR42600.2020.00630.
[26]ZHANG Z P, PENG H W, FU J L, et al. Ocean: object-aware anchor-free tracking[C]// Computer Vision-ECCV 2020: LNCS Volume 12366. Cham: Springer, 2020: 771-787. DOI: 10.1007/978-3-030-58589-1_46.
[27]BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]// Computer Vision-ECCV 2016 Workshops: LNCS Volume 9914. Cham: Springer, 2016: 850-865. DOI: 10.1007/978-3-319-48881-3_56.
[28]VALMADRE J, BERTINETTO L, HENRIQUES J, et al. End-to-end representation learning for correlationfilter based tracking[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 5000-5008. DOI: 10.1109/CVPR.2017.531.
[29]DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 6931-6939. DOI: 10.1109/CVPR.2017.733.
[30]LI B, YAN J J, WU W, et al. High performance visual tracking with Siamese region proposal network[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 8971-8980. DOI: 10.1109/CVPR.2018.00935.
[31]LI B, WU W, WANG Q, et al.SiamRPN++: evolution of Siamese visual tracking with very deep networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 4277-4286. DOI: 10.1109/CVPR.2019.00441.
[32]WANG G T, LUO C, XIONG Z W, et al. SPM-tracker: series-parallel matching for real-time visual object tracking[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 3638-3647. DOI: 10.1109/CVPR.2019.00376.
[33]卢湖川, 李佩霞, 王栋. 目标跟踪算法综述[J]. 模式识别与人工智能, 2018, 31(1): 61-76. DOI: 10.16451/j.cnki. issn1003-6059.201801006.
[34]李玺, 查宇飞, 张天柱, 等. 深度学习的目标跟踪算法综述[J]. 中国图象图形学报, 2019, 24(12): 2057-2080.
[35]ZHANG L C, GONZALEZ-GARCIA A, VAN DE WEIJER J, et al. Learning the model update for Siamese trackers[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 4009-4018. DOI: 10.1109/ICCV.2019.00411.
[36]ZHU Z, WANG Q, LI B, et al. Distractor-aware Siamese networks for visual object tracking[C]// Computer Vision-ECCV 2018: LNCS Volume 11213. Cham: Springer, 2018: 103-119. DOI: 10.1007/978-3-030-01240-3_7.
[37]THRUN S. Is learning then-th thing any easier than learning the first?[C]// Advances in Neural Information Processing Systems 8 (NIPS 1995). Cambridge, MA: MIT Press, 1995: 640-646.
[38]LI F F, FERGUS R, PERONA P. One-shot learning of object categories[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 594-611. DOI: 10.1109/TPAMI.2006.79.
[39]SANTORO A, BARTUNOV S, BOTVINICK M, et al. Meta-learning with memory-augmented neural networks[C]// Proceedings of the 33rd International Conference on International Conference on Machine Learning: PMLR Volume 48. New York, NY:PMLR, 2016: 1842-1850.
[40]FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]// Proceedings of the 34th International Conference on Machine Learning: PMLR Volume 70. Sydney:PMLR, 2017: 1126-1135.
[41]ORESHKIN B, RODRÍGUEZ LÓPEZ P, LACOSTE A. TADAM: task dependent adaptive metric for improved few-shot learning[C]// Advances in Neural Information Processing Systems 31 (NeurIPS 2018). Red Hook: Curran Associates, Inc., 2018: 721-731.
[42]SUNG F, YANG Y X, ZHANG L, et al. Learning tocompare: relation network for few-shot learning[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 1199-1208. DOI: 10.1109/CVPR.2018.00131.
[43]HUANG L H, ZHAO X, HUANG K Q. Bridging the gap between detection and tracking: a unified approach[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 3998-4008. DOI: 10.1109/ICCV.2019.00410.
[44]WANG G T, LUO C, SUN X Y, et al. Tracking by instance detection: a meta-learning approach[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 6287-6296. DOI: 10.1109/CVPR42600.2020.00632.
[45]CHENG S Y, ZHONG B N, LI G R, et al. Learning to filter: Siamese relation network for robust tracking[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 4419-4429. DOI: 10.1109/CVPR46437.2021.00440.
[46]WU Y, LIM J W, YANG M H. Online object tracking: a benchmark[C]// 2013 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2013: 2411-2418. DOI: 10.1109/CVPR.2013.312.
[47]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017). Red Hook, NY: Curran Associates, Inc., 2017: 6000-6010.
[48]韩光, 刘旭辉, 刘佶鑫, 等. 基于并行空频注意力引导的任务感知目标跟踪算法[J]. 南京邮电大学学报(自然科学版), 2022, 42(1): 62-72. DOI: 10.14132/j.cnki.1673-5439.2022.01.009.
[49]冯琪堯, 张惊雷. 基于混合注意力机制的目标跟踪算法[J]. 计算机工程与科学, 2022, 44(2): 276-282. DOI: 10.3969/j.issn.1007-130X.2022.02.012.
[50]朱张莉, 饶元, 吴渊, 等. 注意力机制在深度学习中的研究进展[J]. 中文信息学报, 2019, 33(6): 1-11. DOI: 10.3969/j.issn.1003-0077.2019.06.001.
[51]WANG N, ZHOU W G, WANG J, et al. Transformer meets tracker: exploiting temporal context for robust visual tracking[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 1571-1580. DOI: 10.1109/CVPR46437.2021.00162.
[52]ZHAO M J, OKADA K, INABA M.TrTr: visual tracking with transformer[EB/OL]. (2021-05-09)[2022-02-25]. https://arxiv.org/abs/2105.03817v1. DOI: 10.48550/arXiv.2105.03817.
[53]BLATTER P, KANAKIS M, DANELLJAN M, et al. Efficient visual tracking with exemplartransformers[EB/OL]. (2021-12-17)[2022-02-25]. https://arxiv.org/abs/2112.09686v1. DOI: 10.48550/arXiv.2112.09686.
[54]LI Z Y, TAO R, GAVVES E, et al. Tracking by natural language specification[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 7350-7358. DOI: 10.1109/CVPR.2017.777.
[55]WANG X, LI C L, YANG R, et al. Describe and attend to track: learning natural language guided structural representation and visual attention for objecttracking[EB/OL]. (2018-11-27)[2022-02-25]. https://arxiv.org/abs/1811. 10014. DOI: 10.48550/arXiv.1811.10014.
[56]FENG Q, ABLAVSKY V, BAI Q X, et al. Robust visual object tracking with natural language region proposalnetwork[EB/OL]. (2019-12-04)[2022-02-25]. https://arxiv.org/abs/1912.02048v1. DOI: 10.48550/arXiv.1912.02048.
[57]WANG X, SHU X J, ZHANG Z P, et al. Towards more flexible and accurate object tracking with natural language: algorithms and benchmark[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 13758-13768. DOI: 10.1109/CVPR46437.2021.01355.
[58]LUKEZIC A, ZAJC L C, VOJIR T, et al. Performance evaluation methodology for long-term single-object tracking[J]. IEEE Transactions on Cybernetics, 2021, 51(12): 6305-6318. DOI: 10.1109/TCYB.2020.2980618.
[59]JUNG I, SON J, BAEK M, et al. Real-timeMDNet[C]// Computer Vision-ECCV 2018: LNCS Volume 11208. Cham: Springer, 2018: 89-104. DOI: 10.1007/978-3-030-01225-0_6.
[60]ZHANG Z P, PENG H W. Deeper and wider Siamese networks for real-time visual tracking[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 4586-4595. DOI: 10.1109/CVPR.2019.00472.
[61]ZHANG Y H, WANG D, WANG L J, et al. Learning regression and verification networks for long-term visual tracking [EB/OL]. (2018-11-19)[2022-02-25]. https://arxiv.org/abs/1809.04320. DOI: 10.48550/arXiv.1809.04320.
[62]YAN B, ZHAO H J, WANG D, et al. ‘Skimming-perusal’ tracking: a framework for real-time and robust long-term tracking[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 2385-2393. DOI: 10.1109/ICCV.2019.00247.
[63]HUANG L H, ZHAO X, HUANG K Q.GlobalTrack: a simple and strong baseline for long-term tracking[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11037-11044. DOI: 10.1609/aaai.v34i07.6758.
[64]ZHANG Z K, ZHONG B N, ZHANG S P, et al. Distractor-aware fast tracking via dynamic convolutions and MOT philosophy[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 1024-1033. DOI: 10.1109/CVPR46437.2021.00108.
[65]DU X Z, LIN T Y, JIN P C, et al.SpineNet: learning scale-permuted backbone for recognition and localization[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 11589-11598. DOI: 10.1109/CVPR42600.2020.01161.
[66]GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 7029-7038. DOI: 10.1109/CVPR.2019.00720.
[67]XU H, YAO L W, ZHANG W, et al. Auto-FPN: automatic network architecture adaptation for object detection beyond classification[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 6648-6657. DOI: 10.1109/ICCV.2019.00675.
[1] CHAO Rui, ZHANG Kunli, WANG Jiajia, HU Bin, ZHANG Weicong, HAN Yingjie, ZAN Hongying. Construction of Chinese Multimodal Knowledge Base [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 31-39.
[2] MA Xinna, ZHAO Men, QI Lin. Fault Diagnosis Based on Spiking Convolution Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 112-120.
[3] ZHANG Canlong, LI Yanru, LI Zhixin, WANG Zhiwen. Block Target Tracking Based on Kernel Correlation Filter and Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 12-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[2] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[3] TIE Jun, LONG Juanjuan, ZHENG Lu, NIU Yue, SONG Yanlin. Tomato Leaf Disease Recognition Model Based on SK-EfficientNet[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 104 -114 .
[4] WENG Ye, SHAO Desheng, GAN Shu. Principal Component Liu Estimation Method of the Equation    Constrained Ⅲ-Conditioned Least Squares[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 115 -125 .
[5] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[6] HE Qing, LIU Jian, WEI Lianfu. Single-Photon Detectors as the Physical Limit Detections of Weak Electromagnetic Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 1 -23 .
[7] TIAN Ruiqian, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, JIANG Pinqun, CAI Chaobo. Research Progress of Successive Approximation Register Analog-to-Digital Converter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 24 -35 .
[8] ZHANG Shichao, LI Jiaye. Knowledge Matrix Representation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 36 -48 .
[9] LIANG Yuting, LUO Yuling, ZHANG Shunsheng. Review on Chaotic Image Encryption Based on Compressed Sensing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 49 -58 .
[10] HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59 -71 .