Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 67-79.doi: 10.16088/j.issn.1001-6600.2022101301

Previous Articles     Next Articles

Neuron Image Segmentation Based on Dual Coding Path Fusion and Bidirectional ConvLSTM

QIAN Youwei1, HE Fuyun1,2*, WEI Yan1, FENG Huiling1, HU Cong2   

  1. 1. School of Electronic and Information Engineering, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (Guilin University of Electronic Technology), Guilin Guangxi 541004, China
  • Received:2022-10-13 Revised:2022-12-26 Online:2023-05-25 Published:2023-06-01

Abstract: Target segmentation is one of the essential steps in neuronal image analysis. The accuracy of segmentation directly affects the quality of neuronal image analysis and reconstruction. In the face of fuzzy structure boundary, weak noise or weak fiber signal, the existing segmentation methods still have some problems, such as large error and inaccurate recognition signal. To solve these problems, based on the characteristics of neurons, a deep learning network based on dual coding path fusion and bidirectional ConvLSTM is proposed for neuronal image segmentation. Firstly, the network adopts dual coding paths to extract features in the encoder stage, in which the first encoding path adopts dense connection network based on dilated convolution as the fixed feature extractor, and the second encoder adopts deep residual network as the feature extraction network. Then, the densely connected ASPP network is used as a bridge to connect the encoder and decoder. Finally, bidirectional ConvLSTM is used to combine encoder and decoder in skip connection, and a fusion network is introduced in the decoder stage to fuse the features extracted by the two encoders, so as to enhance the spatial information propagation. The results of multiple comparative experiments show that the proposed network can effectively improve the segmentation accuracy of electron microscope neuron images. Sen and Dice on ISBI-2012 and SNEMI3D datasets reaches 0.952 7, 0.958 9 and 0.941 6, 0.912 7, respectively, and the average accuracy is higher than that of U-net and other models.

Key words: image segmentation, neuron, dual coding path, D-ASPP, bidirectional ConvLSTM

CLC Number:  TP391.41
[1] BOUÇA-MACHADO R, TITOVA N, CHAUDHURI K R, et al. Palliative care for patients and families with Parkinson's disease[J]. International Review of Neurobiology, 2017, 132: 475-509. DOI: 10.1016/bs.irn.2017.02.017.
[2] HU J M, LIU S Y. Modulating intracellular oxidative stress via engineered nanotherapeutics[J]. Journal of Controlled Release, 2020, 319: 333-343. DOI: 10.1016/j.jconrel.2019.12.040.
[3] ZHANG Q R, ZHANG M, CHEN T H, et al. Recent advances in convolutional neural network acceleration[J]. Neurocomputing, 2019, 323: 37-51. DOI: 10.1016/j.neucom.2018.09.038.
[4] LU Y, LU G M, LI J X, et al. High-parameter-efficiency convolutional neural networks[J]. Neural Computing and Applications, 2020, 32(14): 10633-10644. DOI: 10.1007/s00521-019-04596-w.
[5] 张鑫, 姚庆安, 赵健, 等. 全卷积神经网络图像语义分割方法综述[J]. 计算机工程与应用, 2022, 58(8): 45-57. DOI: 10.3778/j.issn.1002-8331.2109-0091.
[6] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. DOI: 10.1109/tpami.2016.2572683.
[7] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: LNCS Volume 9351. Cham: Springer, 2015: 234-241. DOI: 10.1007/978-3-319-24574-4_28.
[8] ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: LNCS Volume 11045. Cham: Springer, 2018: 3-11. DOI: 10.1007/978-3-030-00889-5_1.
[9] 吴相远, 申诺, 蒙玉洪, 等.基于U-Net++的人体脊椎MRI图像识别[J]. 桂林电子科技大学学报, 2022, 42(1): 36-42. DOI: 10.16725/j.cnki.cn45-1351/tn.2022.01.004.
[10] 徐思则, 刘威. 基于UNet网络的乳腺癌肿瘤细胞图像分割[J]. 电子设计工程, 2022, 30(12): 63-66, 73. DOI: 10.14022/j.issn1674-6236.2022.12.013.
[11] 张秦瑞, 林国军, 朱晏梅. 改进SegNet网络对遥感图像的语义分割[J]. 宜宾学院学报, 2022, 22(6): 37-41. DOI: 10.19504/j.cnki.issn1671-5365.2022.06.08.
[12] 雷竞雄. 基于改进的SegNet分割网络的遥感图像分割[J]. 理论数学, 2022, 12(11): 1875-1881. DOI: 10.12677/PM.2022.1211201.
[13] GAO S H, CHENG M M, ZHAO K, et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662. DOI: 10.1109/TPAMI.2019.2938758.
[14] 高慧, 阎晓东, 张衡, 等. 基于Res2Net的多尺度遥感影像海陆分割方法[J]. 光学学报, 2022, 42(18): 147-154. DOI: 10.3788/AOS202242.1828004.
[15] 刘尚旺, 张杨杨, 蔡同波, 等. 基于改进PSPnet的无人机农田场景语义分割[J]. 灌溉排水学报, 2022, 41(4): 101-108. DOI: 10.13522/j.cnki.ggps.2021406.
[16] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 6230-6239. DOI: 10.1109/CVPR.2017. 660.
[17] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. DOI: 10.1109/TPAMI.2017.2699184.
[18] LI J, OU X, SHEN N Y, et al. Study on strategy of CT image sequence segmentation for liver and tumor based on U-Net and Bi-ConvLSTM[J]. Expert Systems with Applications, 2021, 180: 115008. DOI: 10.1016/j.eswa.2021.115008.
[19] 司明明, 陈玮, 胡春燕, 等. 融合Resnet50和U-Net的眼底彩色血管图像分割[J]. 电子科技, 2021, 34(8): 19-24. DOI: 10.16180/j.cnki.issn1007-7820.2021.08.004.
[20] 秦志远, 朱峻泷, 张琛, 等. 基于ResNet34-UNet的静脉超声图像分割方法研究[J]. 临床超声医学杂志, 2022, 24(1): 74-78. DOI: 10.16245/j.cnki.issn1008-6978.2022.01.001.
[21] 王卓英, 童基均, 蒋路茸, 等. 基于U-Dense-net网络的DSA图像冠状动脉血管分割[J]. 浙江理工大学学报(自然科学版), 2021, 45(3): 390-399. DOI: 10.3969/j.issn.1673-3851(n).2021.03.013.
[22] 魏榕剑, 邵剑飞. 基于改进Dense Net网络的肺炎X光图像识别算法[J]. 电视技术, 2021, 45(6): 140-143. DOI: 10.16280/j.videoe.2021.06.040.
[23] OFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille: PMLR, 2015: 448-456.
[24] CHENG J L, TIAN S W, YU L, et al. ResGANet: residual group attention network for medical image classification and segmentation[J]. Medical Image Analysis, 2022, 76: 102313. DOI: 10.1016/j.media.2021.102313.
[25] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 2261-2269. DOI: 10.1109/CVPR.2017.243.
[26] DUTTA K. Densely connected recurrent residual (dense R2UNet) convolutional neural network for segmentation of lung CT images[EB/OL]. (2021-02-01)[2022-10-13]. https://arxiv.org/abs/2102.00663. DOI: 10.48550/arXiv.2102.00663.
[27] ZHOU E J, XU X, XU B M, et al. An enhancement model based on dense atrous and inception convolution for image semantic segmentation[J]. Applied Intelligence,2023,53(5):5519-5531. DOI: 10.1007/s10489-022-03448-w.
[28] YANG B, CHEN W X, LUO H Q, et al. Neuron image segmentation via learning deep features and enhancing weak neuronal structures[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(5): 1634-1645. DOI: 10.1109/jbhi.2020.3017540.
[29] YANG B, LIU M, WANG Y N, et al. Structure-guided segmentation for 3D neuron reconstruction[J]. IEEE Transactions on Medical Imaging, 2021, 41(4): 903-914. DOI: 10.1109/tmi.2021.3125777.
[30] JIANG Y, CHEN W X, LIU M, et al. 3D neuron microscopy image segmentation via the ray-shooting model and a DC-BLSTM network[J]. IEEE Transactions on Medical Imaging, 2021, 40(1): 26-37. DOI: 10.1109/tmi.2020.3021493.
[31] WANG H, ZHANG D H, SONG Y, et al. Segmenting neuronal structure in 3D optical microscope images via knowledge distillation with teacher-student network[C]//2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). Piscataway NJ: IEEE, 2019: 228-231. DOI: 10.1109/ISBI.2019.8759326.
[32] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. DOI: 10.1109/tpami.2019.2913372.
[33] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL]. (2014-12-22)[2022-10-13]. https://arxiv.org/abs/1412.7062v1. DOI: 10.48550/arXiv.1412.7062.
[34] WANG Z M, WANG J S, YANG K, et al. Semantic segmentation of high-resolution remote sensing images based on a class feature attention mechanism fused with Deeplabv3+[J]. Computers & Geosciences, 2022, 158: 104969. DOI: 10.1016/j.cageo.2021.104969.
[35] CARDONA A, SAALFELD S, PREIBISCH S, et al. An integrated micro-and macro architectural analysis of the drosophila brain by computer-assisted serial section electron microscopy[J]. PLoS Biology, 2010, 8(10): e1000502. DOI: 10.1371/journal.pbio.1000502.
[36] LEE K, ZUNG J, LI P, et al. Superhuman accuracy on the SNEMI3D connectomics challenge[EB/OL]. (2017-05-31)[2022-10-13]. https://arxiv.org/abs/1706.00120v1. DOI: 10.48550/arXiv.1706.00120.
[37] 丁才富, 杨晨, 纪秋浪, 等. MCA-Net: 多尺度综合注意力CNN在医学图像分割中的应用[J]. 微电子学与计算机, 2022, 39(3): 71-77. DOI: 10.19304/j.issn1000-7180.2021.0950.
[38] 李玉慧, 梁创学, 李军. 基于Group-Depth U-Net的电子显微图像中神经元结构分割[J]. 中国医学物理学杂志, 2020, 37(6): 720-725. DOI: 10.3969/j.issn.1005-202X.2020.06.012.
[39] ROY S, CHAKRABORTY A. Semantic segmentation of highly class imbalanced fully labeled 3D volumetric biomedical images and unsupervised domain adaptation of the pre-trained segmentation network to segment another fully unlabelled biomedical 3D image stack[EB/OL]. (2020-03-13)[2022-10-13]. https://arxiv.org/abs/2004.02748. DOI: 10.48550/arXiv.2004.02748.
[40] URAKUBO H, BULLMANN T, KUBOTA Y, et al. UNI-EM: an environment for deep neural network-based automated segmentation of neuronal electron microscopic images[J]. Scientific Reports, 2019, 9: 19413. DOI: 10.1038/s41598-019-55431-0.
[1] MA Jun. Dynamics and Model Approach for Functional Neurons [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 307-323.
[2] WAN Liming, ZHANG Xiaoqian, LIU Zhigui, SONG Lin, ZHOU Ying, LI Li. CT Image Segmentation of UNet Pulmonary Nodules Based on Efficient Channel Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 66-75.
[3] WANG Xun, LI Tinghui, PAN Xiao, TIAN Yu. Image Segmentation Method Based on Improved Fuzzy C-means Clustering and Otsu Maximum Variance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 68-73.
[4] XIA Haiying. Cervical Cell Images Segmentation Based on Improved SLIC Region Merging [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 93-100.
[5] TANG Zong-xiang, WU Guan-yi. Progress in Neuronal Circuits and Transmission of Itch in the Spinal Cord [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 236-243.
[6] LI Jing-wen, ZHANG Zi-ping, GUO Wei-li, SU Hao, LUO Wen-bing. A High Resolution Image Segmentation Method of a Combination ofWatershed and Multi-scale [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 40-44.
[7] ZHANG Xin-ming, ZHANG Yu-shan, LI Zhen-yun. Image Thresholding Method Based on Improved Moment Preserving [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 185-190.
[8] FENG Jia-li, YANG Run-ze. Application of Attribute Theory in Image Segment [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 191-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Zening, LUO Xuemei, LIAO Xian, CHEN Guoyan, WU Zhengjun. Killing Action of Calcium Chloride on Egg Mass of Pomacea canaliculata[J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 156 -161 .
[2] RAN Hao, ZHOU Shan-yi. Checklist of Chinese Ants:Formicomorph Subfamilies (Hymenoptera:Formicidae) (Ⅲ)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 104 -111 .
[3] DU Xuesong,LIN Yong,LIANG Guokun,HUANG Yin,BIN Shiyu, CHEN Zhong,QIN Junqi,ZHAO Yi. Comparison of Low Temperature Resistant Performance between Two Tilapia[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 174 -179 .
[4] BIN Shiyu, LIAO Fang, DU Xuesong, XU Yilan, WANG Xin, WU Xia, LIN Yong. Research Progress on Cold Tolerance of Tilapia[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 10 -16 .
[5] CHEN Danni, CHEN Zhilin, ZHOU Shanyi. A Checklist of Family Formicidae of China: Myrmecinae (Addendum) (Insect: Hymenoptera)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 87 -97 .
[6] JIANG Xianghui, TAN Rong, YANG Yongping, XIAO Qingzong. Analysis of Network Pharmacology and Confirmation of Mahonia fortunei (Lindl. ) Fedde and Glycyrrhiza uralensis Fisch Decoction for Hepatitis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 198 -209 .
[7] TIAN Zhentao, ZHANG Junjian. Quantile Feature Screening for Ultra High Dimensional Censored Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 99 -111 .
[8] CAO Xinguang, YUE Weipeng, DENG Jie. Soil Organic Carbon Distribution Characteristics along an Altitudinal Gradient in the Northern Subtropical Region: A Case Study in Guifeng Mountains of Eastern Hubei, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 174 -182 .
[9] DU Jinfeng, WANG Hairong, LIANG Huan, WANG Dong. Progress of Cross-modal Retrieval Methods Based on Representation Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 1 -12 .
[10] ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76 -87 .