Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (6): 13-23.doi: 10.16088/j.issn.1001-6600.2021022801
Previous Articles Next Articles
PANG Bingbing1,2,3, YE Fengcai1,2,3, LI Yuyan1,2,3, SHANG Changhua1,2,3*
CLC Number:
[1] 殷林, 林俊芳, 叶志伟, 等. 外界因子调控类胡萝卜素生物合成研究进展[J]. 食品与机械, 2016, 32(5): 214-219. DOI:10.13652/j.issn.1003-5788.2016.05.049. [2] WICHUK K, BRYNJÓLFSSON S, FU W Q. Biotechnological production of value-added carotenoids from microalgae: Emerging technology and prospects[J]. Bioengineered, 2014, 5(3): 204-208.DOI:10.4161/bioe.28720. [3] DEMBITSKY V M, MAOKA T.Allenic and cumulenic lipids[J]. Progress in Lipid Research, 2007, 46(6): 328-375. DOI:10.1016/j.plipres.2007.07.001. [4] MIZIORKO H M. Enzymes of the mevalonate pathway of isoprenoid biosynthesis[J]. Archives of Biochemistry and Biophysics, 2011, 505(2): 131-143. DOI:10.1016/j.abb.2010.09.028. [5] ZINGLÉ C, KUNTZ L, TRITSCH D, et al. Isoprenoid biosynthesis via the methylerythritol phosphate pathway: structural variations around phosphonate anchor and spacer of fosmidomycin, a potent inhibitor of deoxyxylulose phosphate reductoisomerase[J]. The Journal of Organic Chemistry, 2010, 75(10): 3203-3207. DOI:10.1021/jo9024732. [6] VRANOVÁ E, COMAN D, GRUISSEM W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis[J]. Annual Review of Plant Biology, 2013, 64: 665-700. DOI:10.1146/annurev-arplant-050312-120116. [7] LEÓN R, COUSO I, FERNÁ NDEZ E. Metabolic engineering of ketocarotenoids biosynthesis in theunicelullar microalga Chlamydomonas reinhardtii[J]. Journal of Biotechnology, 2007, 130(2): 143-152. DOI:10.1016/j.jbiotec.2007.03.005. [8] XU Y N, HARVEY P J. Carotenoid production by Dunaliella salina under red light[J]. Antioxidants, 2019, 8(5): 123. DOI:10.3390/antiox8050123. [9] GIANNELLI L, YAMADA H, KATSUDA T,et al. Effects of temperature on the astaxanthin productivity and light harvesting characteristics of the green alga Haematococcus pluvialis[J]. Journal of Bioscience and Bioengineering, 2015, 119(3): 345-350. DOI:10.1016/j.jbiosc.2014.09.002. [10] 王鑫威, 王丽丽, 龚一富, 等. 茉莉酸甲酯对雨生红球藻虾青素含量和dxs基因表达的影响[J]. 水产学报, 2011, 35(12): 1822-1828. [11] PIRASTRU L, DARWISH M, CHU F L,et al. Carotenoid production and change of photosynthetic functions in Scenedesmus sp. exposed to nitrogen limitation and acetate treatment[J]. Journal of Applied Phycology, 2012, 24(1): 117-124. DOI:10.1007/s10811-011-9657-4. [12] SAHA S K, MOANE S, MURRAY P. Effect of macro-and micro-nutrient limitation on superoxidedismutase activities and carotenoid levels in microalga Dunaliella salina CCAP 19/18[J]. Bioresource Technology, 2013, 147: 23-28. DOI:10.1016/j.biortech.2013.08.022. [13] FARHAT N, RABHI M, FALLEH H,et al. Optimization of salt concentrations for a higher carotenoid production in Dunaliella salina (Chlorophyceae)[J]. Journal of Phycology, 2011, 47(5): 1072-1077. DOI:10.1111/j.1529-8817.2011.01036.x. [14] LIU W H, MING Y, LI P,et al. Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation[J]. Plant Physiology and Biochemistry, 2012, 54: 43-48. DOI:10.1016/j.plaphy.2012.01.018. [15] FU W Q, PAGLIA G, MAGNÚSDÓTTIR M,et al. Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina[J]. Microbial Cell Factories, 2014, 13: 3. DOI:10.1186/1475-2859-13-3. [16] FU W Q, CHAIBOONCHOE A, KHRAIWESH B,et al. Algal cell factories: Approaches, applications, and potentials[J]. Marine Drugs, 2016, 14(12): 225. DOI:10.3390/md14120225. [17] DEPAUW F A, ROGATO A,RIBERA D’ALCALÀ M, et al. Exploring the molecular basis of responses to light in marine diatoms[J]. Journal of Experimental Botany, 2012, 63(4): 1575-1591. DOI:10.1093/jxb/ers005. [18] 陈建楠, 陈由强, 薛婷. 利用UV和ARTP诱变筛选优良性状的球等鞭金藻[J]. 福建农业科技, 2020(2): 9-16. DOI:10.13651/j.cnki.fjnykj.2020.02.002. [19] YI Z Q, SU Y X, XU M N,et al. Chemical mutagenesis and fluorescence-based high-throughput screening for enhanced accumulation of carotenoids in a model marine diatom Phaeodactylum tricornutum[J]. Marine Drugs, 2018, 16(8): 272. DOI:10.3390/md16080272. [20] 武昌俊, 唐欣昀. 光照对杜氏盐藻突变藻株Zea1生长和积累玉米黄素的影响[J]. 食品科学, 2012, 33(3): 199-202. [21] O’NEILL E C, SAALBACH G, FIELD R A. Gene discovery for synthetic biology: exploring the novel natural product biosynthetic capacity of eukaryotic microalgae[J]. Methods in Enzymology, 2016, 576: 99-120. DOI:10.1016/bs.mie.2016.03.005. [22] BANERJEE C, DUBEY K K, SHUKLA P. Metabolic engineering of microalgal based biofuel production: Prospects and challenges[J]. Frontiers in Microbiology, 2016, 7: 432. DOI:10.3389/fmicb.2016.00432. [23] JAGADEVAN S, BANERJEE A, BANERJEE C,et al. Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production[J]. Biotechnology for Biofuels, 2018, 11(1): 185. DOI:10.1186/s13068-018-1181-1. [24] VICKERS C E, BONGERS M, LIU Q,et al. Metabolic engineering of volatile isoprenoids in plants and microbes[J]. Plant, Cell & Environment, 2014, 37(8): 1753-1775. DOI:10.1111/pce.12316. [25] MULDERS K J M, LAMERS P P, MARTENS D E, et al. Phototrophic pigment production with microalgae: biological constraints and opportunities[J]. Journal of Phycology, 2014, 50(2): 229-242. DOI:10.1111/jpy.12173. [26] KAPOOR D, SHARMA R, HANDA N,et al. Redox homeostasis in plants under abiotic stress: Role of electron carriers, energy metabolism mediators and proteinaceous thiols[J]. Frontiers in Environmental Science, 2015, 3: 13. DOI:10.3389/fenvs.2015.00013. [27] SUN T H, TADMOR Y, LI L. Pathways for carotenoid biosynthesis, degradation, and storage[M]//RODRÍGUEZ-CONCEPCIOŃ M WELSCHR. Methods in Molecular Biology: Plant and Food Carotenoids. New York: Humana, 2020: 3-23. DOI:10.1007/978-1-4939-9952-1_1. [28] CHEN Q W, LI J X, LIU Z X, et al. Molecular basis for sesterterpene diversity produced by plant terpene synthases[J]. Plant Communications, 2020, 1(5): 100051. DOI:10.1016/j.xplc.2020.100051. [29] KATHIRESAN S, CHANDRASHEKAR A, RAVISHANKAR G A,et al. Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in Haematococcus pluvialis[J]. Journal of Biotechnology, 2015, 196-197: 33-41. DOI:10.1016/j.jbiotec.2015.01.006. [30] WANG S S, ZHANG L, CHI S, et al. Phylogenetic analyses of the genes involved in carotenoid biosynthesis in algae[J]. Acta Oceanologica Sinica, 2018, 37(4): 89-101. DOI:10.1007/s13131-018-1178-4. [31] CHAVARRIAGA-AGUIRRE P, PRÍAS M, LÓPEZ D, et al. Molecular analysis of the expression of a crtB transgene and the endogenous psy2-y 1 and psy2-y 2 genes of cassava and their effect on root carotenoid content[J]. Transgenic Research, 2017, 26(5): 639-651. DOI:10.1007/s11248-017-0037-y. [32] XI Y M, KONG F T, CHI Z Y. ROS Induce β-carotene biosynthesis caused by changes of photosynthesis efficiency and energy metabolism in Dunaliella salina under stress conditions[J]. Frontiers in Bioengineering and Biotechnology, 2021, 8: 613768. DOI:10.3389/fbioe.2020.613768. [33] COUSO I, VILA M, VIGARA J,et al. Synthesis of carotenoids and regulation of the carotenoid biosynthesis pathway in response to high light stress in the unicellular microalga Chlamydomonas reinhardtii[J]. European Journal of Phycology, 2012, 47(3): 223-232. DOI:10.1080/09670262.2012.692816. [34] MAO X M, WU T, SUN D Z,et al. Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production[J]. Bioresource Technology, 2018, 249: 791-798. DOI:10.1016/j.biortech.2017.10.090. [35] ORTIZ-TORRES M I, FERNÁNDEZ-NIÑO M, CRUZ J C,et al. Rational design of photo-electrochemical hybrid devices based on graphene and Chlamydomonas reinhardtii light-harvesting proteins[J]. Scientific Reports, 2020, 10(1): 3376. DOI:10.1038/s41598-020-60408-5. [36] SHANG C H, XU X L, YUAN Z H,et al. Cloning and differential expression analysis of geranylgeranyl diphosphate synthase gene from Dunaliella parva[J]. Journal of Applied Phycology, 2016, 28(4): 2397-2405. DOI:10.1007/s10811-015-0767-2. [37] SHANG C H, WANG W, ZHU S N,et al. The responses of two genes encoding phytoene synthase (Psy) and phytoene desaturase (Pds) to nitrogen limitation and salin-ity up-shock with special emphasis on carotenogenesis in Dunaliella parva[J]. Algal Research-Biomass Biofuels and Bioproducts, 2018, 32: 1-10. DOI:10.1016/j.algal.2018.03.002. [38] LV H X, CUI X G, WAHID F,et al. Analysis of the physiological and molecular responses of Dunaliella salina to macronutrient deprivation[J]. PLoS One, 2016, 11(3): e0152226. DOI:10.1371/journal.pone.0152226. [39] SUN T H, LIU C Q, HUI YY, et al. Coordinated regulation of gene expression for carotenoid metabolism in Chlamydomonas reinhardtii[J]. Journal of Integrative Plant Biology, 2010, 52(10): 868-878. DOI:10.1111/j.1744-7909.2010.00993.x. [40] LI Z R, PEERS G, DENT R M,et al. Evolution of an atypical de-epoxidase for photoprotection in the green lineage[J]. Nature Plants, 2016, 2: 16140. DOI:10.1038/nplants.2016.140. [41] SHI T Q, WANG L R, ZHANG Z X,et al. Stresses as first-line tools for enhancing lipid and carotenoid production in microalgae[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 610. DOI:10.3389/fbioe.2020.00610. [42] BAI F, GUSBETH C, FREY W,et al. Nanosecond pulsed electric fields modulate the expression of the astaxanthin biosynthesis genes psy, crtR-b and bkt 1 in Haematococcus pluvialis[J]. Scientific Reports, 2020, 10(1): 15508. DOI:10.1038/s41598-020-72479-5. [43] HUANG W P, YE J R, ZHANG J J,et al. Transcriptome analysis of Chlorella zofingiensis to identify genes and their expressions involved in astaxanthin and tri-acylglycerol biosynthesis[J]. Algal Research-Biomass Biofuels and Bioproducts, 2016, 17: 236-243. DOI:10.1016/j.algal.2016.05.015. [44] KATO Y, HASUNUMA T. Metabolic engineering for carotenoid production using eukaryotic microalgae and prokaryotic cyanobacteria[J]. Advances in Experimental Medicine and Biology, 2021, 1261: 121-135. DOI:10.1007/978-981-15-7360-6_10. [45] KUMAR G, SHEKH A, JAKHU S, et al. Bioengineering of microalgae: recent advances, perspectives, and regulatory challenges for industrial application[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 914. DOI:10.3389/fbioe.2020.00914. [46] GALARZA J I, GIMPEL J A, ROJAS V,et al. Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering[J]. Algal Research-Biomass Biofuels and Bioproducts, 2018, 31: 291-297. DOI:10.1016/j.algal.2018.02.024. [47] VARELA J C, PEREIRA H, VILA M,et al. Production of carotenoids by microalgae: achievements and challenges[J]. Photosynthesis Research, 2015, 125(3): 423-436. DOI:10.1007/s11120-015-0149-2. [48] BAEK K, YU J, JEONG J,et al. Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis[J]. Biotechnology and Bioengineering, 2018, 115(3): 719-728. DOI:10.1002/bit.26499. [49] ANILA N, SIMON D P, CHANDRASHEKAR A, et al. Metabolic engineering of Dunaliella salina for production of ketocarotenoids[J]. Photosynthesis Research, 2016, 127(3): 321-333. DOI:10.1007/s11120-015-0188-8. [50] COUSO I, VILA M, RODRIGUEZ H, et al. Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids[J]. Biotechnology Progress, 2011, 27(1): 54-60. DOI:10.1002/btpr.527. [51] CORDERO B F, COUSO I, LEÓN R,et al. Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis[J]. Applied Microbiology and Biotechnology, 2011, 91(2): 341-351. DOI:10.1007/s00253-011-3262-y. [52] LIU J, MAO X M, ZHOU W G, et al. Simultaneous production of triacylglycerol and high-value carotenoids by theastaxanthin-producing oleaginous green microalga Chlorella zofingiensis[J]. Bioresource Technology, 2016, 214: 319-327. DOI:10.1016/j.biortech.2016.04.112. [53] CAO B, ZHAO Y, ZHANG Z,et al. Gene regulatory network construction identified NFYA as a diffuse subtype-specific prognostic factor in gastric cancer[J]. International Journal of Oncology, 2018, 53(5): 1857-1868. DOI:10.3892/ijo.2018.4519. [54] 樊宝莲, 王晓云. 转录因子调控植物类胡萝卜素合成途径的研究进展[J]. 分子植物育种, 2021,19(13): 4401-4408. [55] PAPDI C, PÉREZ-SALAMÓ I, JOSEPH M P, et al. The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3[J]. The Plant Journal, 2015, 82(5): 772-784. DOI:10.1111/tpj.12848. [56] LLORENTE B, D’ANDREA L, RUIZ-SOLA M A,et al. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism[J]. the Plant Journal, 2016, 85(1): 107-119. DOI:10.1111/tpj.13094. [57] RUIZ-SOLA M Á, RODRÍGUEZ-VILLALÓN A, RODRÍGUEZ-CONCEPCIÓN M. Light-sensitive Phytochrome-Interacting Factors (PIFs) are not required to regulate phytoene synthase gene expression in the root[J]. Plant Signaling & Behavior, 2014, 9(8): e29248. DOI:10.4161/psb.29248. [58] , BOCOBZA S, PANDA S, et al. Analysis of wild tomato introgression lines elucidates the genetic basis of transcriptome and metabolome variation underlying fruit traits and pathogen response[J]. Nature Genetics, 2020, 52(10): 1111-1121. DOI:10.1038/s41588-020-0690-6. [59] GARCEAU D C, BATSON M K, PAN I L. Variations on a theme in fruit development: the PLE lineage of MADS-box genes in tomato (TAGL1) and other species[J]. Planta, 2017, 246(2): 313-321. DOI:10.1007/s00425-017-2725-5. [60] MA N N, FENG H L, MENG X,et al. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening[J]. BMC Plant Biology, 2014, 14: 351. DOI:10.1186/s12870-014-0351-y. [61] ZHOU H, LIN-WANG K, WANG H L, et al. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors[J]. The Plant Journal, 2015, 82(1): 105-121. DOI:10.1111/tpj.12792. [62] FU CC, HAN Y C, FAN Z Q, et al. The papaya transcription factor CpNAC1 modulates carotenoid biosynthesis through activating phytoene desaturase genes CpPDS2/4 during fruit ripening[J]. Journal of Agricultural and Food Chemistry, 2016, 64(27): 5454-5463. DOI:10.1021/acs.jafc.6b01020. [63] WEBER T, CHARUSANTI P, MUSIOL-KROLL E M,et al. Metabolic engineering of antibiotic factories: New tools for antibiotic production in actinomycetes[J]. Trends in Biotechnology, 2015, 33(1): 15-26. DOI:10.1016/j.tibtech.2014.10.009. |
No related articles found! |
|