Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (6): 1-12.doi: 10.16088/j.issn.1001-6600.2021030502

    Next Articles

Effects of Biochar on Soil Available Cadmium and Cadmium Uptake by Plants:A Meta Analysis

LIANG Jiayi1,2†, WANG Yongsen1,2†, DUAN Ming1,2, LI Yi1,3, CHEN Zhe1,4, YU Fangming1,3*, LIU Kehui1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    3. College of Environment and Resource, Guangxi Normal University, Guilin Guangxi 541006, China;
    4. Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology (Guilin University of Technology), Guilin Guangxi 541006, China
  • Received:2021-03-05 Revised:2021-04-18 Online:2021-11-25 Published:2021-12-08

Abstract: Soil cadmium (Cd) pollution is a worldwide environmental issue. Biochar which is commonly reported to reduce soil available Cd (SA-Cd) and Cd uptake by plants (Cd-UP) has become one of the hot topics in bioremediation field. In this paper, effects of biochar, including feedstock materials, application rates, production conditions (time, temperature and pH) as well as the target soil characteristics on SA-Cd and Cd-UP were analyzedby using the meta-analysis based on 84 related papers. The results showed that the application of biochar significantly (P<0.05) decreased the concentration of SA-Cd in loamy and clayey soils by 33.06% and 17.00%, respectively, while the effects were not significant (P>0.05) in sandy soils. The effects of biochar on SA-Cd and Cd-UP were more significant in weakly acidic soils (5.5

Key words: biochar, Cd contaminated soil, Cd availability, Cd uptake, meta-analysis, soil remediation

CLC Number: 

  • X53
[1] WEISSMANNOVÁ H D, PAVLOVSKÝ J. Indices of soil contamination by heavy metals—methodology of calculation for pollution assessment (minireview)[J]. Environmental Monitoring and Assessment, 2017, 189(12): 616. DOI:10.1007/s10661-017-6340-5.
[2] SUN M X, WANG T, XU X B, et al. Ecological risk assessment of soil cadmium in China’s coastal economic development zone: a meta-analysis[J]. Ecosystem Health and Sustainability, 2020, 6(1): 1733921. DOI:10.1080/20964129.2020.1733921.
[3] HU Y A, CHENG H F. Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region[J]. Environmental Science &Technology, 2013, 47(8): 3752-3760. DOI:10.1021/es304310k.
[4] QIAO D H, WANG G S, LI X S, et al. Pollution, sources and environmental risk assessment of heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit, Tibet, China[J]. Chemosphere, 2020, 248: 125988. DOI:10.1016/j.chemosphere.2020.125988.
[5] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 国土资源通讯, 2014(8): 26-29.
[6] HAJEB P, SLOTH J J, SHAKIBAZADEH S, et al. Toxic elements in food: occurrence, binding, and reduction approaches[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(4): 457-472. DOI:10.1111/1541-4337.12068.
[7] YANG X, LU K P, McGROUTHER K, et al. Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs[J]. Journal of Soils and Sediments, 2017, 17(3): 751-762. DOI:10.1007/s11368-015-1326-9.
[8] 黄连喜, 魏岚, 刘晓文, 等. 生物炭对土壤—植物体系中铅镉迁移累积的影响[J]. 农业环境科学学报, 2020, 39(10): 2205-2216. DOI:10.11654/jaes.2020-0740.
[9] QIU Z, TANG J W, CHEN J H, et al. Remediation of cadmium-contaminated soil with biochar simultaneously improves biochar’s recalcitrance[J]. Environmental Pollution, 2020, 256: 113436. DOI:10.1016/j.envpol.2019.113436.
[10] ZIA UR REHMAN M, RIZWAN M, ALI S, et al. Cadmium (Cd) concentration in wheat (Triticum aestivum) grown in Cd-spiked soil varies with the doses and biochar feedstock[J]. Arabian Journal of Geosciences, 2018, 11(21): 685. DOI:10.1007/s12517-018-4037-x.
[11] 席冬冬, 李晓敏, 熊子璇, 等. 生物炭负载纳米零价铁对污染土壤中铜钴镍铬的协同去除[J]. 环境工程, 2020, 38(6): 58-66. DOI:10.13205/j.hjgc.202006010.
[12] ALI A, SHAHEEN S M, GUO D, et al. Apricot shell-and apple tree-derived biochar affect the fractionation and bioavailability of Zn and Cd as well as the microbial activity in smelter contaminated soil[J]. Environmental Pollution, 2020, 264:114773. DOI:10.1016/j.envpol.2020.114773.
[13] PUGA A P, ABREU C A, MELO L C A, et al. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium[J]. Journal of Environmental Management, 2015, 159: 86-93. DOI:10.1016/j.jenvman.2015.05.036.
[14] AL-WABEL M I, USMAN A R A, EI-NAGGAR A H, et al. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants[J]. Saudi Journal of Biological Sciences, 2015, 22(4): 503-511. DOI:10.1016/j.sjbs.2014.12.003.
[15] 刁韩杰, 张进, 王敏艳, 等. 高温热解对污泥炭特性及其重金属形态变化的影响[J]. 环境工程, 2019, 37(3): 29-34.
[16] 刘巍, 陈效民, 景峰, 等. 生物质炭对土壤—水稻系统中Cd迁移累积的影响[J]. 水土保持学报, 2019, 33(1): 323-327.
[17] 彭少麟, 郑凤英. Meta分析及Meta Win软件[J]. 土壤与环境, 1999, 8(4): 295-299. DOI:10.3969/j.issn.1674-5906.1999.04.014.
[18] ALBERT H A, LI X, JEYAKUMAR P, et al. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis[J]. Science of the Total Environment, 2021, 755(Part2): 142582. DOI:10.1016/j.scitotenv.2020.142582.
[19] ZHOU Z H, WANG C K, LUO Y Q. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality[J]. Nature Communications, 2020, 11(1): 3072. DOI:10.1038/s41467-020-16881-7.
[20] 吴舒尧, 黄姣, 李双成. 不同生态恢复方式下生态系统服务与生物多样性恢复效果的整合分析[J]. 生态学报, 2017, 37(20): 6986-6999. DOI:10.5846/stxb201608211716.
[21] LI Y, CHANG S X, TIAN L H, et al. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis[J]. Soil Biology and Biochemistry, 2018, 121: 50-58. DOI:10.1016/j.soilbio.2018.02.024.
[22] GUREVITCH J, KORICHEVA J, NAKAGAWAS, et al. Meta-analysis and the science of research synthesis[J]. Nature, 2018, 555(7695): 175-182. DOI:10.1038/nature25753.
[23] 刘成, 刘晓雨, 张旭辉, 等. 基于整合分析方法评价我国生物质炭施用的增产与固碳减排效果[J]. 农业环境科学学报, 2019, 38(3): 696-706.
[24] 黄敏, 刘茜, 朱楚仪, 等. 施用生物质炭对土壤Cd、Pb有效性影响的整合分析[J]. 环境科学学报, 2019, 39(2): 560-569. DOI:10.13671/j.hjkxxb.2018.0341.
[25] HU Y M, ZHANG P, YANG M. et al. Biochar is an effective amendment to remediate Cd-contaminated soils: a meta-analysis[J]. Journal of Soils and Sediments, 2020, 20(11): 3884-3895. DOI:10.1007/s11368-020-02726-9.
[26] GEISSELER D, LINQUIST B A, LAZICKI P A. Effect of fertilization on soil microorganisms in paddy rice systems-a meta-analysis[J]. Soil Biology and Biochemistry, 2017, 115: 452-460. DOI:10.1016/j.soilbio.2017.09.018.
[27] VILAS-BOAS J A, CARDOSO S J, SENRA M V X, et al. Ciliates as model organisms for the ecotoxicological risk assessment of heavy metals: a meta-analysis[J]. Ecotoxicology and Environmental Safety, 2020, 199: 110669. DOI:10.1016/j.ecoenv.2020.110669.
[28] 孙向阳, 陈金林, 崔晓阳, 等. 土壤学[M]. 北京: 中国林业出版社, 2005.
[29] 熊毅, 李庆逵. 中国土壤[M]. 2版. 北京: 科学出版社, 1987.
[30] 肖婧, 徐虎, 蔡岸冬, 等. 生物质炭特性及施用管理措施对作物产量影响的整合分析[J]. 中国农业科学, 2017, 50(10): 1827-1837. DOI:10.3864/j.issn.0578-1752.2017.10.008.
[31] 范珍珍, 王鑫, 王超, 等. 整合分析氮磷添加对土壤酶活性的影响[J]. 应用生态学报, 2018, 29(4): 1266-1272. DOI:10.13287/j.1001-9332.201804.024.
[32] ADAMS D C, GUREVITCH J, ROSENBERG M S. Resampling tests for meta-analysis of ecological data[J]. Ecology, 1997, 78(4): 1277-1283. DOI:10.2307/2265879.
[33] 蔡岸冬, 张文菊, 杨品品, 等. 基于Meta-Analysis研究施肥对中国农田土壤有机碳及其组分的影响[J]. 中国农业科学, 2015, 48(15): 2995-3004. DOI:10.3864/j.issn.0578-1752.2015.15.009.
[34] SUKREEYAPONGSE O, HOLM P E, STROBEL B W, et al. pH-Dependent release of cadmium, copper, and lead from natural and sludge-amended soils[J]. Journal of Environmental Quality, 2002, 31(6): 1901-1909. DOI:10.2134/jeq2002.1901.
[35] ZENG F R, ALI S, ZHANG H T, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J]. Environmental Pollution, 2011, 159(1): 84-91. DOI:10.1016/j.envpol.2010.09.019.
[36] HUSSAIN B, ASHRAF M N, SHAFEEQ-RAHMAN S, et al. Cadmium stress in paddy fields: effects of soil conditions and remediation strategies[J]. Science of the Total Environment, 2021, 754: 142188. DOI:10.1016/j.scitotenv.2020.142188.
[37] 孙彤, 李可, 付宇童, 等. 改性生物炭对弱碱性Cd污染土壤钝化修复效应和土壤环境质量的影响[J]. 环境科学学报, 2020, 40(7): 2571-2580. DOI:10.13671/j.hjkxxb.2019.0502.
[38] CHEN X, HE H Z, CHEN G K, et al. Effects of biochar and crop straws on the bioavailability of cadmium in contaminated soil[J]. Scientific Reports, 2020, 10(1): 9528. DOI:10.1038/s41598-020-65631-8.
[39] ZHANG G X, GUO X F, ZHAO Z H, et al. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil[J]. Environmental Pollution, 2016, 218(11): 513-522. DOI:10.1016/j.envpol.2016.07.031.
[40] XU W J, HOU S Z, LI Y Q, et al. Bioavailability and speciation of heavy metals in polluted soil as alleviated by different types of biochars[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(4): 484-488. DOI:10.1007/s00128-020-02804-1.
[41] CHEN D, LIU X Y, BIAN R J, et al. Effects of biochar on availability and plant uptake of heavy metals-a meta-analysis[J]. Journal of Environmental Management, 2018, 222: 76-85. DOI:10.1016/j.jenvman.2018.05.004.
[42] 李江遐, 吴林春, 张军, 等. 生物炭修复土壤重金属污染的研究进展[J]. 生态环境学报, 2015, 24(12): 2075-2081. DOI:10.16258/j.cnki.1674-5906.2015.12.024.
[43] ZENG X Y, XIAO Z H, ZHANG G L, et al. Speciation and bioavailability of heavy metals in pyrolytic biochar of swine and goat manures[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132: 82-93. DOI:10.1016/j.jaap.2018.03.012.
[44] VALDÉS-RODRÍGUEZ O A, SÁNCHEZ-SÁNCHEZ O, PÉREZ-VÁZQUEZ A. Effects of soil texture on germination and survival of non-toxic Jatropha curcas seeds[J]. Biomass and Bioenergy, 2013, 48: 167-170. DOI:10.1016/j.biombioe.2012.10.025.
[45] PAULINA G, YONG S O, PATRYK O. The dark side of black gold: ecotoxicological aspects of biochar and biochar-amended soils[J]. Journal of Hazardous Materials, 2021, 403: 123833. DOI:10.1016/j.jhazmat.2020.123833.
[46] CAO X D, MA L N, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9): 3285-3291. DOI:10.1021/es803092k.
[47] 郑凯琪, 王俊超, 刘姝彤, 等. 不同热解温度污泥生物炭对Pb2+、Cd2+的吸附特性[J]. 环境工程学报, 2016, 10(12): 7277-7282. DOI:10.12030/j.cjee.201507083.
[48] ANGIN D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake[J]. Bioresource Technology, 2003, 128(1): 593-597. DOI:10.1016/j.biortech.2012.10.150.
[49] 蔡朝卉, 楚沉静, 郑浩, 等. 热解温度和时间对香蒲生物炭性质的影响及生态风险评估[J]. 环境科学, 2020, 41(6): 2963-2971. DOI:10.13227/j.hjkx.201909072.
[50] 王道涵, 李景阳, 汤家喜. 不同热解温度生物炭对溶液中镉的吸附性能研究[J]. 工业水处理, 2020, 40(1): 18-23. DOI:10.11894/iwt.2018-1173.
[51] 蔡瑞, 李玉奇. 生物质炭对不同质地镉污染土壤性质及有效镉的影响[J]. 安徽农业科学, 2019, 47(3): 70-72. DOI:10.3969/j.issn.0517-6611.2019.03.023.
[52] 葛丽炜, 夏颖, 刘书悦, 等. 热解温度和时间对马弗炉制备生物炭的影响[J]. 沈阳农业大学学报, 2018, 49(1): 95-100.
[53] 李思苇, RUBAB S, 杨文浩, 等. 炭化温度和时间对不同废菌棒生物炭结构性质的影响[J]. 福建农业学报, 2019, 34(10): 1211-1220. DOI:10.19303/j.issn.1008-0384.2019.10.015.
[54] 鞠天琛, 於斯, 李晓军, 等. 低温鸡粪生物质炭的制备及其对土壤理化性质的影响[J]. 吉林农业大学学报, 2020, 42(3): 322-328. DOI:10.13327/j.jjlau.2020.5561.
[55] CIMÒ G, KUCERIK J, BERNS A E, et al. Effect of heating time and temperature on the chemical characteristics of biochar from poultry manure[J]. Journal of Agricultural and Food Chemistry, 2014, 62(8): 1912-1918. DOI:10.1021/jf405549z.
[56] 常春, 王胜利, 郭景阳, 等. 不同热解条件下合成生物炭对铜离子的吸附动力学研究[J]. 环境科学学报, 2016, 36(7): 2491-2502. DOI:10.13671/j.hjkxxb.2015.0742.
[57] 李永正, 毛凌晨, 严南峡, 等. 鸽粪基生物炭对土壤重金属形态的影响[J]. 燃烧科学与技术, 2020, 26(2): 185-191.
[58] REES F, SIMONNOT M O, MOREL J L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase[J]. European Journal of Soil Science, 2014, 65(1): 149-161. DOI:10.1111/ejss.12107.
[59] 高瑞丽, 朱俊, 汤帆, 等. 水稻秸秆生物炭对镉、铅复合污染土壤中重金属形态转化的短期影响[J]. 环境科学学报, 2016, 36(1): 251-256. DOI:10.13671/j.hjkxxb.2015.0463.
[60] MENG J, TAO M M, WANG L L, et al. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure[J]. Science of the Total Environment, 2018, 633: 300-307. DOI:10.1016/j.scitotenv.2018.03.199.
[61] CHENG S, CHEN T, XU W B, et al. Application research of biochar for the remediation of soil heavy metals contamination: A review[J]. Molecules, 2020, 25(14): 3167. DOI:10.3390/molecules25143167.
[1] PENG Limei, ZHAO Li, ZHOU Wu, HU Yueming. Risk Assessment of Heavy Metals in Cultivated Land in Conghua District of Guangzhou City, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 118-129.
[2] XU Tingting, YU Qiuping, QI Peiyi, LIU Kehui, LI Yi, JIANG Yongrong, YU Fangming. Effects of Different Washing Solutions on the Desorption of Heavy Metals from a Lead-zinc Mine Soil [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 188-193.
[3] JIANG Shao-feng, LI Yun-fei, LAN Yun-hua, LIU Yi, LU Zu-jun. Isolation and Identification of a Nitrogen-fixing Bacteria Klebsiella oxytoca and Screening of Sensitive Antimicrobials [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 137-143.
[4] LAN Yun-hua, JIANG Shao-feng, GONG You-li, LI Yun-fei, XIA Ying-hua, LU Zu-jun. Pollution and Fixed/Transformed Ratio of Paraquat in Water of Huixian Wetland [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 142-151.
[5] DENG Hua, HUANG Qing-xian, LU Jin-yi, PAN Ming-wei, LI Ming-shun. Remediation Effects of Mn-contaminated Soil by Polygonum pubescens Blume [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 132-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .