Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 216-226.doi: 10.16088/j.issn.1001-6600.2022030310
Previous Articles Next Articles
ZHANG Yiwen1,2, WEI Wenyan1,2, ZHAO Jingjin1,2*
CLC Number:
[1]SMITH D S, EREMIN S A. Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules[J]. Analytical and Bioanalytical Chemistry, 2008, 391(5): 1499-1507. DOI: 10.1007/s00216-008-1897-z. [2]JAMESON D M, ROSS J A. Fluorescence polarization/anisotropy in diagnostics and imaging[J]. Chemical Reviews, 2010, 110(5): 2685-2708. DOI: 10.1021/cr900267p. [3]ZHANG H Y, YANG S P, DE RUYCK K, et al. Fluorescence polarization assays for chemical contaminants in food and environmental analyses[J]. Trends in Analytical Chemistry, 2019, 114: 293-313. DOI: 10.1016/j.trac.2019.03.013. [4]PERRIER S, GUIEU V, CHOVELON B, et al. Panoply of fluorescence polarization/anisotropy signaling mechanisms for functional nucleic acid-based sensing platforms[J]. Analytical Chemistry, 2018, 90(7): 4236-4248. DOI: 10.1021/acs.analchem.7b04593. [5]XIAO X, ZHEN S J. Recent advances in fluorescence anisotropy/polarization signal amplification[J]. RSC Advances, 2022, 12(11): 6364-6379. DOI: 10.1039/D2RA00058J. [6]LI Y P, ZHAO Q. Aptamer structure switch fluorescence anisotropy assay for small molecules using streptavidin as an effective signal amplifier based on proximity effect[J]. Analytical Chemistry, 2019, 91(11): 7379-7384. DOI: 10.1021/acs.analchem.9b01253. [7]ZHANG M, LE H N, WANG P, et al. A versatile molecular beacon-like probe for multiplexed detection based on fluorescence polarization and its application for a resettable logic gate[J]. Chemical Communications, 2012, 48(80): 10004-10006. DOI: 10.1039/c2cc35185d. [8]HUANG Y, LIU X Q, ZHANG L L, et al. Nicking enzyme and graphene oxide-based dual signal amplification for ultrasensitive aptamer-based fluorescence polarization assays[J]. Biosensors and Bioelectronics, 2015, 63: 178-184. DOI: 10.1016/j.bios.2014.07.036. [9]ZHANG M, GUAN Y M, YE B C. Ultrasensitive fluorescence polarization DNA detection by target assisted exonuclease III-catalyzed signal amplification[J]. Chemical Communications, 2011, 47(12): 3478-3480. DOI: 10.1039/c0cc05703g. [10]ZHU Q Y, LI H, XU D K. et al. Sensitive and enzyme-free fluorescence polarization detection for miRNA-21 based on decahedral sliver nanoparticles and strand displacement reaction[J]. RSC Advances, 2020, 10(29): 17037-17044. DOI: 10.1039/D0RA01950J. [11]赵晨, 张亮, 倪原. 荧光偏振技术在生命科学中的研究进展[J]. 现代生物医学进展, 2010, 10(16): 3154-3156. DOI: 10.13241/j.cnki.pmb.2010.16.001. [12]HENDRICKSON O D, TARANOVA N A, ZHERDEV A V, et al. Fluorescence polarization-based bioassays: new horizons[J]. Sensors, 2020, 20(24): 7132. DOI: 10.3390/s20247132. [13]HALL M D, YASGAR A, PERVEA T, et al. Fluorescence polarization assays in high-throughput screening and drug discovery: a review[J]. Methods and Applications in Fluorescence, 2016, 4(2): 022001. DOI: 10.1088/2050-6120/4/2/022001. [14]张晓辉, 王璇, 杨娜, 等. 一种新型快速检测半胱氨酸的荧光探针[J]. 分析试验室, 2022, 41(1): 55-58. DOI: 10.13595/j.cnki.issn1000-0720.2021.022003. [15]JIANG Y X, TIAN J N, HU K, et al. Sensitive aptamer-based fluorescence polarization assay for mercury(II) ions and cysteine using silver nanoparticles as a signal amplifier[J]. Microchimica Acta, 2014, 181(11): 1423-1430. DOI: 10.1007/s00604-014-1296-4. [16]RUTA J, PERRIER S, RAVELET C, et al. Noncompetitive fluorescence polarization aptamer-based assay for small molecule detection[J]. Analytical Chemistry, 2009, 81(17): 7468-7473. DOI: 10.1021/ac9014512. [17]FAN Y Y, MOU Z L, WANG M, et al. Chimeric aptamers-based and MoS2 nanosheet-enhanced label-free fluorescence polarization strategy for adenosine triphosphate detection[J]. Analytical Chemistry, 2018, 90(22): 13708-13713. DOI: 10.1021/acs.analchem.8b04107. [18]MA Y Y, YIN J L, LI G H, et al. Simultaneous sensing of nucleic acid and associated cellular components with organic fluorescent chemsensors[J]. Coordination Chemistry Reviews, 2020, 406: 213144. DOI: 10.1016/j.ccr.2019.213144. [19]LIANG S P, HE G C, TIAN J N, et al. Fluorescence polarization gene assay for HIV-DNA based on the use of dendrite-modified gold nanoparticles acting as signal amplifiers[J]. Microchimica Acta, 2018, 185(2): 119. DOI: 10.1007/s00604-018-2673-1. [20]ZHAO J J, CHU Z D, JIN X, et al. A fluorescence polarization assay for nucleic acid based on the amplification of hybridization chain reaction and nanoparticles[J]. Sensors and Actuators B: Chemical, 2015, 209: 116-121. DOI: 10.1016/j.snb.2014.11.102. [21]LI X T, HUANG N, ZHANG L L, et al. A T7 exonuclease assisted dual-cycle signal amplification assay of miRNA using nanospheres-enhanced fluorescence polarization[J]. Talanta, 2019, 202: 297-302. DOI: 10.1016/j.talanta.2019.05.006. [22]NISHIYAMA K, TAKAHASHI K, FUKUYAMA M, et al. Facile and rapid detection of SARS-CoV-2 antibody based on a noncompetitive fluorescence polarization immunoassay in human serum samples[J]. Biosensors and Bioelectronics, 2021, 190: 113414. DOI: 10.1016/j.bios.2021.113414. [23]ZHANG D P, ZHAO Q, ZHAO B L, et al. Fluorescence anisotropy reduction of allosteric aptamer for sensitive and specific protein signaling[J]. Analytical Chemistry, 2012, 84(7): 3070-3074. DOI: 10.1021/ac3004133. [24]LI X, DING X L, LI Y F, et al. A TiS2 nanosheet enhanced fluorescence polarization biosensor for ultra-sensitive detection of biomolecules[J]. Nanoscale, 2016, 8(18): 9852-9860. DOI: 10.1039/c6nr00946h. [25]GAO Y F, XU J, LI B X, et al. Nanoparticle-aided amplification of fluorescence polarization for ultrasensitively monitoring activity of telomerase[J]. ACS Applied Materials and Interfaces, 2016, 8(22): 13707-13713. DOI: 10.1021/acsami.6b02271. [26]ZOU M J, CHEN Y, XU X, et al. The homogeneous fluorescence anisotropic sensing of salivary lysozyme using the 6-carboxyfluorescein-labeled DNA aptamer[J]. Biosensors and Bioelectronics, 2012, 32(1): 148-154. DOI: 10.1016/j.bios.2011.11.052. [27]ZHANG X L, XU J G, XING X G, et al. Framework nucleic acid-wrapped protein-inorganic hybrid nanoflowers with three-stage amplified fluorescence polarization for terminal deoxynucleotidyl transferase activity biosensing[J]. Biosensors and Bioelectronics, 2021,193: 113564. DOI: 10.1016/j.bios.2021.113564. [28]CHOI J W, VASAMSETTI B M K, CHOO J, et al. Analysis of deoxyribonuclease activity by conjugation-free fluorescence polarisation in sub-nanolitre droplets[J]. Analyst, 2020, 145: 3222-3228. DOI: 10.1039/C9AN02380A. [29]ZHAO J J, MA Y F, KONG R M, et al. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity[J]. Analytica Chimica Acta, 2015, 887: 216-223. DOI: 10.1016/j.aca.2015.07.006. [30]薛丹枫. 生物化学技术在铅检测中的应用探究[J]. 云南化工, 2021, 48(11): 95-97. DOI: 10.3969/j.issn.1004-275X.2021.11.30. [31]YIN B C, ZUO P, HUO H, et al. DNAzyme self-assembled gold nanoparticles for determination of metal ions using fluorescence anisotropy assay[J]. Analytical Biochemistry, 2010, 401(1): 47-52. DOI: 10.1016/j.ab.2010.02.014. [32]WANG Z X, PEI X J, LI N, et al. Phosphate-perylene modified G-quadruplex probes for the detection of Pb2+ using fluorescence anisotropy[J]. Journal of Materials Chemistry B, 2016, 4: 4330-4336. DOI: 10.1039/c6tb00539j. [33]HU P, YANG B. Cleavable DNA-protein hybrid molecular beacon: a novel efficient signal translator for sensitive fluorescence anisotropy bioassay[J]. Talanta, 2016, 147: 276-281. DOI: 10.1016/j.talanta.2015.10.003. [34]祖丽德孜·努兰, 沈鉴, 冷晓婷, 等. 硫胺素-三维荧光法测定水中汞离子的研究[J]. 光谱学与光谱分析, 2021, 41(6): 1846-1851. DOI: 10.3964/j.issn.1000-0593(2021)06-1846-06. [35]YE B C, YIN B C. Highly sensitive detection of mercury(II) ions by fluorescence polarization enhanced by gold nanoparticles[J]. Angewandte Chemie International Edition, 2008, 47(44): 8386-8389. DOI: 10.1002/ange.200803069. [36]ZHANG J N, TIAN J N, HE Y L, et al. A K+-mediated G-quadruplex formation enhancement fluorescence polarization system based on quantum dots for detection of Hg2+ and biothiols[J]. Chemical Communications, 2014, 50(16): 2049-2051. DOI: 10.1039/c3cc49424a. [37]LIAO S Q, ZHAO J J, QIN Y F, et al. A novel fluorescence polarization assay for copper ions based on DNA-templated click chemistry and amplification of nanoparticles[J]. RSC Advances, 2017, 7(88): 55668-55672. DOI: 10.1039/c7ra11159b. [38]YAKUSHEVA A, MURATOV D S, ARKHIPOV D, et al. Water-soluble carbon quantum dots modified by amino groups for polarization fluorescence detection of copper(II) ion in aqueous media[J]. Processes, 2020, 8(12): 1573. DOI: 10.3390/pr8121573. [39]WANG G K, SHAO C W, YAN C L, et al. Fluorescence polarization sensor platform based on gold nanoparticles for the efficient detection of Ag(I)[J]. Journal of Luminescence, 2019, 210: 21-27. DOI: 10.1016/j.jlumin.2018.12.015. [40]QI L, YAN Z, HUO Y, et al. MnO2 nanosheet-assisted ligand-DNA interaction-based fluorescence polarization biosensor for the detection of an Ag+ ions[J]. Biosensors and Bioelectronics, 2017, 87: 566-571. DOI: 10.1016/j.bios.2016.08.093. [41]ZHANG D P, WANG H L. Fluorescence anisotropy reduction of an allosteric G-rich oligonucleotide for specific silver ion and cysteine detection based on G-Ag+-G base pair[J]. Analytical Chemistry, 2019, 91(22): 14538-14544. DOI: 10.1021/acs.analchem.9b03556. [42]SHI W Y, JI X L, ZHANG S T, et al. Fluorescence chemosensory ultrathin films for Cd2+ based on the assembly of benzothiazole and layered double hydroxide[J]. The Journal of Physical Chemistry C, 2011, 115(42): 20433-20441. DOI: 10.1021/jp2063035. [43]李星星, 陶亮. 艰难梭菌感染:抗生素滥用引发的全球公共健康威胁[J].科学, 2021, 73(3): 40-42,49,4. [44]柳颖, 郭逸蓉, 朱国念. 荧光偏振免疫分析在农药残留检测中的研究进展[J]. 分析仪器, 2016(S1): 64-68. [45]LEI H T, XUE G, YU C F, et al. Fluorescence polarization as a tool for the detection of a widely used herbicide, butachlor, in polluted waters[J]. Analytical Methods, 2011, 3(10): 2334-2340. DOI: 10.1039/clay05347g. [46]雷红涛, 吴青, 卢蓝蓝, 等. 置换型荧光偏振免疫检测除草剂丁草胺[J]. 分析化学, 2013, 41(7): 1031-1036. DOI: 10.3724 /SP.J.1096.2013.30068. [47]XU Z L, WANG Q, LEI H T, et al. A simple, rapid and high-throughput fluorescence polarization immunoassay for simultaneous detection of organophosphorus pesticides in vegetable and environmental water samples[J]. Analytica Chimica Acta, 2011, 708(1/2): 123-129. DOI: 10.1016/j.aca.2011.09.040. [48]LI M, LIU X F, HUA X D, et al. Fluorescence polarization immunoassay for highly efficient detection of clothianidin in agricultural samples[J]. Analytical Methods, 2014, 6(16): 6541-6547. DOI: 10.1039/c4ay00987h. [49]YANG J Y, ZHANG Y, WANG H, et al. Development of fluorescence polarisation immunoassay for carbofuran in food and environmental water samples[J]. Food and Agricultural Immunology, 2015, 26(3): 340-355. DOI: 10.1080/09540105.2014.914890. [50]MA M, CHEN M, FENG L, et al. Fluorescence polarization immunoassay for highly efficient detection of imidaclothiz in agricultural samples[J]. Food Analytical Methods, 2016, 9(9): 2471-2478. DOI: 10.1007/s12161-016-0434-5. [51]LIU Y, LIU R, BORODULEVA A, et al. A highly specific and sensitive fluorescence polarization immunoassay for the rapid detection of triazophos residue in agricultural products[J]. Analytical Methods, 2016,8: 6636-6644. DOI: 10.1039/c6ay00908e. [52]BORODULEVA A Y, WU J, YANG Q Q, et al. Development of fluorescence polarization immunoassays for parallel detection of pesticides carbaryl and triazophos in wheat grains[J]. Analytical Methods, 2017,9(48): 6814-6822. DOI: 10.1039/c7ay02091k. [53]DING Y, CHEN H, YANG Q, et al. A fluorescence polarization immunoassay for detection of thiacloprid in environmental and agricultural samples[J]. RSC Advances, 2019, 9(63): 36825-36830. DOI: 10.1039/c9ra04776j. [54]盛恩泽. 乙氧氟草醚单克隆抗体的制备及其免疫分析方法研究[D].南京: 南京农业大学, 2018. [55]BORODULEVA A Y, EREMIN S A. Determination of 2,4-dichlorophenoxyacetic acid in cereals by fluorescence polarization immunoassay[J]. Journal of Analytical Chemistry, 2016, 71(9): 949-954. DOI: 10.1134/S1061934816090045. [56]MURTAZINA N R, EREMIN S A, MOZOLEVA O V, et al. Fluorescent polarization immunoassay for sulphadiazine using a high specificity antibody[J]. International Journal of Food Science and Technology, 2004, 39(8): 879-889. DOI: 10.1111/j.1365-2621.2004.00862.x. [57]SHIM W B, YAKOVLEVA M E, KIM K Y, et al. Development of fluorescence polarization immunoassay for the rapid detection of 6-chloronicotinic acid: main metabolite of neonicotinoid insecticides[J]. Journal of Agricultural and Food Chemistry, 2009, 57(3): 791-796. DOI: 10.1021/jf802647v. [58]蔡卫民, 卢嘉骐, 谈恒山,等. 人血清中庆大霉素浓度的荧光偏振免疫分析法[J]. 中国药学杂志,1990,25(1): 25-27,64. [59]郭志磊, 范捷, 于洋. 固相萃取-HPLC测定人血清万古霉素、去甲万古霉素浓度及其与荧光偏振免疫法测定结果的比较[J]. 中国现代应用药学,2015,32(4): 478-482. DOI: 10.13748/j.cnki.issn1007-7693.2015.04.023. [60]SALSABILA A, AZAM M, SUGITO H, et al. Fluorescence polarization method for detection of lard mixed with olive oil[J]. Journal of Physics: Conference Series, 2021, 1825: 012076. DOI: 10.1088/1742-6596/1825/1/012076. [61]宋佩, 孟萌, EREMIN S A, 等. 荧光偏振免疫分析方法快速检测沙拉沙星残留[J]. 分析化学, 2012, 40(8): 1247-1251. DOI: 10.3724/SP.J.1096.2012.20010. [62]CHEN J H, LV S W, WANG Q, et al. A specific and high-throughput fluorescence polarization immunoassay for surveillance screening of clinafloxacin in milk[J]. Food Analytical Methods, 2015, 8(6): 1468-1476. DOI: 10.1007/s12161-014-0033-2. [63]高月. 新霉素荧光偏振检测方法的建立及应用[D]. 洛阳: 河南科技大学, 2017. [64]MA P F, GUO H L, DUAN N, et al. Label free structure-switching fluorescence polarization detection of chloramphenicol with truncated aptamer[J]. Talanta, 2021,230(8): 122349. DOI: 10.1016/j.talanta.2021.122349. [65]QIN Y F, YE G J, LIANG H, et al. An amplified fluorescence polarization assay for sensitive sensing of organophosphorus pesticides via MnO2 nanosheets[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 269: 120759. DOI: 10.1016/j.saa.2021.120759. [66]ZHANG Z, TANG C H, ZHAO L B, et al. Aptamer-based fluorescence polarization assay for separation-free exosome quantification[J]. Nanoscale, 2019, 11: 10106-10113. DOI: 10.1039/C9NR01589B. [67]HUANG Y, LIU X Q, SHI M, et al. Ultrasensitive fluorescence polarization aptasensors based on exonuclease signal amplification and polystyrene nanoparticle amplification[J]. Chemistry, an Asian Journal, 2014, 9(10): 2755-2760. DOI: 10.1002/asia.201402563. [68]JIN X, ZHAO J J, ZHANG L L, et al. An enhanced fluorescence polarization strategy based on multiple protein-DNA-protein structures for sensitive detection of PDGF-BB[J]. RSC Advances, 2014, 4(13): 6850-6853. DOI:10.1039/c3ra44092c. [69]HE Q Y, CUI X P, SHEN D, et al. Development of a simple, rapid and high-throughput fluorescence polarization immunoassay for glycocholic acid in human urine[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 158: 431-437. DOI: 10.1016/j.jpba.2018.06.023. [70]NIKOLOVSKA-COLESKA Z, WANG R X, FANG X L, et al. Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization[J]. Analytical Biochemistry, 2004, 332(2): 261-273. DOI: 10.1016/j.ab.2004.05.055 [71]JANIK E, NIEMCEWICZ M, PODOGROCKI M, et al. The existing methods and novel approaches in mycotoxins’ detection[J]. Molecules, 2021, 26(13): 3981. DOI: 10.3390/molecules26133981. [72]NAKAMURA A, AOYAGI M, FUKUYAMA M, et al. Determination of deoxynivalenol in wheat, barley, corn meal, and wheat-based products by simultaneous multisample fluorescence polarization immunoassay using a portable analyzer[J]. ACS Food Science and Technology, 2021,1(9): 1623-1628. DOI: 10.1021/acsfoodscitech.1c00244. [73]HUANG X R, TANG X Q, JALLOW A, et al. Development of an ultrasensitive and rapid fluorescence polarization immunoassay for ochratoxin A in rice[J]. Toxins, 2020, 12(11): 682. DOI:10.3390/toxins12110682. [74]WANG F, CAI J, EREMIN S A, et al. Fluorescence polarization immunoassay for Alternaria mycotoxin tenuazonic acid detection and molecular modeling studies of antibody recognition[J]. Food Analytical Methods, 2018, 11: 2455-2462. DOI: 10.1007/s12161-018-1236-8. [75]LI Y P, ZHANG N, WANG H L, et al. Fluorescence anisotropy-based signal-off and signal-on aptamer assays using lissamine rhodamine B as a label for ochratoxin A[J]. Journal of Agricultural and Food Chemistry, 2020, 68(14): 4277-4283. DOI: 10.1021/acs.jafc.0c00549. [76]HUANG H K, QIN J, HU K, et al. Novel autonomous protein-encoded aptamer nanomachines and isothermal exponential amplification for ultrasensitive fluorescence polarization sensing of small molecules[J]. RSC Advances, 2016, 6(89): 86043-86050. DOI: 10.1039/c6ra17959b. [77]YE H, LU Q Q, DUAN N, et al. GO-amplified fluorescence polarization assay for high-sensitivity detection of aflatoxin B1 with low dosage aptamer probe[J]. Analytical and Bioanalytical Chemistry, 2019, 411(5): 1107-1112. DOI: 10.1007/s00216-018-1540-6. [78]周俊, 陈舒曼, 邢兵, 等. 正常来源CD4+CD25+细胞在小鼠肺癌模型中的抗肿瘤作用[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 191-199. DOI: 10.16088/j.issn.1001-6600.2021022202. [79]石玉玲, 胡祖权, 闵海, 等. 渗透压对未成熟树突状细胞生物力学特性和免疫学功能的影响[J]. 医用生物力学, 2020, 35(2): 202-207. DOI: 10.16156/j.1004-7220.2020.02.012. [80]邱炜, 黄瑾, 杨颖颖, 等. 不同pH对结肠癌CT26细胞生物力学特性的影响[J]. 贵州医科大学学报, 2020, 45(11): 1251-1254,1282. DOI: 10.19367/j.cnki.2096-8388.2020.11.003. [81]荣青秀. 二甲基甲酰胺致H9c2心肌细胞膜损伤研究[D]. 合肥: 安徽医科大学, 2017. [82]KANEKO T, MATSUI H, SHIMOKAWA O, et al. Cellular membrane fluidity measurement by fluorescence polarization in indomethacin-induced gastric cellular injury in vitro[J]. Journal of Gastroenterology, 2007, 42(12): 939-946. DOI: 10.1007/s00535-007-2116-y. [83]谢东琴, 冯建军, 郭松林, 等. 镥铕共发光时间分辨荧光免疫法检测嗜水气单胞菌[J]. 分析试验室, 2021, 40(3): 286-290. DOI: 10.13595/j.cnki.issn1000-0720.2020.080601. [84]袁航, 丁同英. 食品中主要真菌毒素检测方法研究进展[J]. 食品与机械, 2020, 36(12): 203-206. DOI: 10.13652/j.issn.1003-5788.2020.12.040. [85]孙怡雯, 汤诗吟, SUHLING K, 等. 基于时间分辨荧光各向异性成像的罗丹明B溶液粘度特性研究[J].光电子·激光, 2013, 24(11): 2254-2258. DOI: 10.16136/j.joel.2013.11.016. [86]汪海林, 赵柏林, 章大鹏, 等. 毛细管电泳-激光诱导荧光偏振分析与RecA动态组装研究[C]∥中国化学会第30届学术年会摘要集——第二十三分会: 复杂样品分离分析. 北京:中国化学会, 2016: 77. |
[1] | WEN Guiqing, LIANG Aihui, JIANG Zhiliang. Progress of Nanocatalysis Surface-enhanced Raman Scattering Spectroscopy in the Analysis of Environmental Pollutants [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 199-215. |
[2] | ZHANG Junwen. Determination of Oleanic Acid and Uosolic Acid in Gentiana straminea Maxim. by MEKC [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 99-104. |
[3] | LI Chongning, PAN Hongcheng, LIU Qingye, LIANG Aihui, JIANG Zhiliang. Peptide Probe Combined Nanosilver Catalytic Reaction-SurfacePlasmon Resonance Spectrophotometric Detectionfor Trace Human Chorionic Gonadotropin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 91-97. |
[4] | LI Chongning, YANG Duo, PAN Hongcheng, WEN Guiqing, LIANG Aihui, JIANG Zhiliang. Hydride Generation-Rhodamine 6G Fluorescence Method forthe Determination of Trace Arsenic [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 111-118. |
[5] | LI Chong-ning, TANG Xue-ping, DENG Wen-jing, WEN Gui-qing, LIU Qing-ye, LIANG Ai-hui, JIANG Zhi-liang. Resonance Rayleigh Scattering Determination of Trace Bromate in Drinking Water Using Polyvinyl Alcohol-Boric Acid-iodine System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 111-116. |
[6] |
TANG Xue-ping, WANG Yao-hui, LIU Qing-ye, WEN Gui-qing, ZHANG Xing-hui, LUO Yang-he, LIANG Ai-hui, JIANG Zhi-liang. An Analytical Platform of Nanosilver SPR Rayleigh Scatteringand Its Application to Detect N2H4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 88-95. |
[7] | JIAO Hang-zhou, LIANG Zhen-hua, PENG Gui-hua, ZHOU Huang-xin. Size Effects of Water-Soluble CdTe Quantum Dot in Metal Ion Detection Applications [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 106-110. |
[8] | LIANG Ai-hui, YANG Duo, LIN Chen-yin, WEN Gui-qing. A Simple and Sensitive Fluorescence Method for Determination of Trace O3 in Air Using Rhodamine 6G [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 98-102. |
[9] | DONG Jin-chao, WEN Gui-qing, LIU Qing-ye, LIANG Ai-hui, JIANG Zhi-liang. Nanocatalytic Resonance Rayleigh Scattering Determination of Trace Hemin Using Aptamer-Modified Nanogold Probe [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 191-196. |
[10] | SU Jun, DUAN Yu-lin, LÜ Shi-jun, LIU Dong-cheng. Determination of 28 Elements of Spatholobus suberectus Dunn by ICP-MS [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 76-81. |
[11] | ZHOU Chang-hui, WU Qi-xun, HOU Qing-gao, GAO Yan-zi, LI Hong-nan, ZHANG Rui. Application of Topology Index in Aliphatic Aldehydes,Fatty Amines and Aliphatic Hydrocarbons Boiling Point [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 82-87. |
[12] | JIANG Zhi-liang, WEI Yan-yan, WANG Sheng-mian, LI Kun, LIANG Ai-hui. SERRS Determination of Trace Gold(Ⅲ) Using 2-Mercaptopyridine as Molecular Probe [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 218-223. |
[13] | LIANG Ai-hui, LIU Gao-san, JIANG Zhi-liang. Resonance Scattering Spectral Assay for Alkaline Phosphatase Using BCIP as Substrate [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 99-105. |
[14] | TANG Mei-ling, LIANG Ai-hui, LIU Qing-ye, JIANG Zhi-liang. Nanocatalytic Spectrophotometric Determination of Palladium(Ⅱ)Using NiCl2-NaH2PO2 System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 47-51. |
[15] | LIU Qiwen, LI Dan, HUANG Xiaofang, LIANG Aihui, JIANG Zhiliang. A New Strategy for the Determination of Trace Mercury by Resonance Rayleigh Scattering Method Based on Nano-gold Catalytic Amplification and Galvanic Replacement Reaction-phosphomolybdic Acid [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 140-148. |
|