Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (2): 140-148.doi: 10.16088/j.issn.1001-6600.2021041901
Previous Articles Next Articles
LIU Qiwen1,2, LI Dan1,2, HUANG Xiaofang1,2, LIANG Aihui1,2*, JIANG Zhiliang1,2*
CLC Number:
[1] ZHANG C L, LUO L, LUO J, et al. A process-analysis microsystem based on density gradient centrifugation and its application in the study of the galvanic replacement mechanism of Ag nanoplates with HAuCl4[J]. Chemical Communications, 2012, 48(58): 7241-7243. [2] JAIN P K, HUANG X H, EL-SAYED I H, et al. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Accounts of Chemical Research, 2008, 41: 1578-1586. [3] LU X M, CHEN J Y, SKRABALAK S E, et al. Galvanic replacement reaction: a simple and powerful route to hollow and porous metal nanostructures[J]. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2007, 221(1): 1-16. [4] SUN Y G, MAYERS B T, XIA Y N. Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors[J]. Nano Letters, 2002, 2(5): 481-485. [5] LIU G L, FENG D Q, ZHENG W J, et al. An anti-galvanic replacement reaction of DNA templated silver nanoclusters monitored by the light-scattering technique[J]. Chemical Communications, 2013, 49: 7941-7943. [6] BI Y P, YE J H. Heteroepitaxial growth of platinum nanocrystals on AgCl nanotubes via galvanic replacement reaction[J]. Chemical Communications, 2010, 46: 1532-1534. [7] NETZER N L, TANAKA Z, CHEN B, et al. Tailoring the SERS enhancement mechanisms of silver nanowire Langmuir-Blodgett films via galvanic replacement reaction[J]. Journal of Applied Physics. 2013, 117: 16187-16194. [8] WU H X, RONG M C, MA Y, et al. PVP-mediated galvanic replacement growth of AgNPs on copper foil for SERS sensing[J]. Micro and Nano Letters, 2020, 15: 590-594. [9] JIANG Z L, LI C N, LIU Y Y, et al. A sensitive galvanic replacement reaction-SERS method for Au(III) with Victoria blue B molecular probes in silver nanosol substrate[J]. Sensors and Actuators B: Chemical, 2017, 251: 404-409. [10] YANG H X, HOU J G, WANG Z H, et al. Porous PtAg nanoshells/reduced graphene oxide based biosensors for low-potential detection of NADH[J]. Microchimica Acta, 2020, 187: 544. [11] LI J B, WANG J H, ZHANG X X, et al. Highly selective detection of epidermal growth factor receptor by multifunctional gold-nanoparticle-based resonance Rayleigh scattering method[J]. Sensors and Actuators B: Chemical, 2018, 273: 1300-1306. [12] MA C J, ZHANG W A, SU Z Q, et al. Resonance Rayleigh scattering method for the determination of chitosan using erythrosine B as a probe and PVA as sensitization[J]. Food Chemistry, 2018, 239: 126-131. [13] LIANG A H, WANG Y H, WEN G Q, et al. A silver nanorod resonance Rayleigh scattering-energy transfer analytical platform for trace tea polyphenols[J]. Food Chemistry, 2016, 197(Part A): 395-399. [14] 李重宁, 潘宏程, 刘庆业, 等. 多肽探针结合纳米银催化反应-吸收测定HCG[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 91-97. [15] WANG H L, LIANG A H, WEN G Q, et al. A simple SPR absorption method for ultratrace Pb2+ based on DNA zyme-COFPd nanocatalysis of Ni-P alloy reaction[J]. Sensors and Actuators B: Chemical, 2021, 330: 129381-129387. [16] ZHANG Z H, LEI K N, LI C N, et al. A new and facile nanosilver SPR colored method for ultratrace arsenic based on aptamer regulation of Au-doped carbon dot catalytic amplification[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 232: 118174-118182. [17] LI C P, NIU Q F, WANG J G, et al. Bithiophene-based fluorescent sensor for highly sensitive and ultrarapid detection of Hg2+ in water, seafood, urine and live cells[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 233: 118208-118214. [18] CHEN C G, VIJAY N, THIRUMALAIYASAN N, et al. Coumarin-based Hg2+ fluorescent probe: fluorescence turn-on detection for Hg2+ bioimaging in living cells and zebrafish[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 219: 135-140. [19] TAN L L, CHEN Z B, ZHANG C, et al. Colorimetric detection of Hg2+ based on the growth of aptamer-coated AuNPs: the effect of prolonging aptamer strands[J]. Small, 2017, 13(14): 1603370-1603376. [20] XING H K, XU J K, ZHU X F, et al. A new electrochemical sensor based on carboimidazole grafted reduced graphene oxide for simultaneous detection of Hg2+ and Pb2+[J]. Journal of Electroanalytical Chemistry, 2016, 782: 250-255. [21] HU X, WANG W, HUANG Y M. Copper nanocluster-based fluorescent probe for sensitive and selective detection of Hg2+ in water and food stuff[J]. Talanta, 2016, 154: 409-415. [22] REN W, ZHANG Y, CHEN H G, et al. Ultrasensitive label-free resonance Rayleigh scattering aptasensor for Hg2+ using Hg2+-triggered exonuclease III-assisted target recycling and growth of G-wires for signal amplification[J]. Analytical Chemistry, 2016, 88(2): 1385-1390. [23] ZHANG S T, ZHANG D X, ZHANG X H, et al. Ultratrace naked-eye colorimetric detection of Hg2+ in wastewater and serum utilizing mercury-stimulated peroxidase mimetic activity of reduced graphene oxide-PEI-Pd nanohybrids[J]. Analytical Chemistry, 2017, 89(6): 3538-3544. [24] TAN F, CONG L C, SAUCEDO N M, et al. An electrochemically reduced graphene oxide chemiresistive sensor for sensitive detection of Hg2+ ion in water samples[J]. Journal of Hazardous Materials, 2016, 320: 226-233. [25] YU J, SONG N, ZHANG Y K, et al. Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+[J]. Sensors and Actuators B: Chemical, 2015, 214: 29-35. [26] NGERNPIMAI S, MATULAKUN P, TEERASONG S, et al. Gold nanorods enhanced resonance Rayleigh scattering for detection of Hg2+ by in-situ mixing with single-stranded DNA[J]. Sensors and Actuators B: Chemical, 2018,255(Part 1): 836-842. [27] TONG Y J, QI J X, SONG A M, et al. Electronic synergy between ligands of luminol and isophthalic acid for fluorescence ratiometric detection of Hg2+[J]. Analytica Chimica Acta, 2020, 1128: 11-18. [28] GAYATHRI J, SELVAN K S, NARAYANAN S S. Fabrication of carbon nanotube and synthesized octadentate ligand modified electrode for determination of Hg(II) in sea water and lake water using square wave anodic stripping voltammetry[J]. Sensing and Bio-Sensing Research, 2018, 19: 1-6. [29] MANIVANNAN S, KANG D K, KIM K. Silicate sol-gel functionalized rGO-Ag sensor-probe for spectral detection of Hg(II) ions[J]. Materials Research Bulletin, 2018, 106: 144-151. [30] SAENCHOOPA A, BOONTA W, TALODTHAISONG C, et al. Colorimetric detection of Hg(II) by γ-aminobutyric acid-silver nanoparticles in water and the assessment of antibacterial activities[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 251: 119433-119438. |
[1] | LIU Qingye, WANG Hua, HUANG Danhua, HE Shihe, LI Jiao, LUO Junheng, ZHANG Xinghui, WEN Guiqing, LIANG Aihui, JIANG Zhiliang. Determination of Trace Chromium(Ⅵ) by Carbon NanoparticlesResonance Energy Transfer Rayleigh Scattering [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 128-133. |
[2] | LI Chong-ning, TANG Xue-ping, DENG Wen-jing, WEN Gui-qing, LIU Qing-ye, LIANG Ai-hui, JIANG Zhi-liang. Resonance Rayleigh Scattering Determination of Trace Bromate in Drinking Water Using Polyvinyl Alcohol-Boric Acid-iodine System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 111-116. |
[3] | DONG Jin-chao, WEN Gui-qing, LIU Qing-ye, LIANG Ai-hui, JIANG Zhi-liang. Nanocatalytic Resonance Rayleigh Scattering Determination of Trace Hemin Using Aptamer-Modified Nanogold Probe [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 191-196. |
|