Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 183-198.doi: 10.16088/j.issn.1001-6600.2021112707
Previous Articles Next Articles
A Yaolin1, WANG Yaohui2, DONG Jinchao1*, LI Jianfeng1,2
CLC Number:
[1]SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: insights into materials design[J]. Science, 2017, 355(6321): eaad4998. DOI:10.1126/science.eaad4998. [2]JIAO Y, ZHENG Y, JARONIEC M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44(8): 2060-2086. DOI:10.1039/c4cs00470a. [3]BENCK J D, HELLSTERN T R, KIBSGAARD J. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials[J]. ACS Catalysis, 2014, 4(11): 3957-3971. DOI:10.1021/cs500923c. [4]SHAO J D, WANG Y, GAO D F, et al. Copper-indium bimetallic catalysts for the selective electrochemical reduction of carbon dioxide[J]. Chinese Journal of Catalysis, 2020, 41(9): 1393-1400. DOI:10.1016/s1872-2067(20)63577-x. [5]GASTEIGER H A, KOCHA S S, SOMPALLI B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 9-35. DOI:10.1016/j.apcatb.2004.06.021. [6]SHAO M H, CHANG Q W, DODELET J P, et al. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chemical Reviews, 2016, 116(6): 3594-3657. DOI:10.1021/acs.chemrev.5b00462. [7]TRINDELL J A, DUAN Z Y, HENKELMAN G, et al. Well-defined nanoparticle electrocatalysts for the refinement of theory [J]. Chemical Reviews, 2020, 120(2): 814-850. DOI:10.1021/acs.chemrev.9b00246. [8]MARKOVIĆN M, ROSS P N. Surface science studies of model fuel cell electrocatalysts[J]. Surface Science Reports, 2002, 45(4/6): 117-229. DOI:10.1016/S0167-5729(01)00022-X. [9]ZHU Y P, KUO T R, LI Y H, et al. Emerging dynamic structure of electrocatalysts unveiled by in situ X-ray diffraction/absorption spectroscopy[J]. Energy and Environmental Science, 2021, 14(4): 1928-1958. DOI:10.1039/d0ee03903a. [10]LI J F, LI C Y, AROCA R F. Plasmon-enhanced fluorescence spectroscopy[J]. Chemical Society Reviews, 2017, 46(13): 3962-3979. DOI:10.1039/c7cs00169j. [11]MCBREEN P H, MOSKOVITS M. A surface-enhanced Raman study of ethylene and oxygen interacting with supported silver catalysts[J]. Journal of Catalysis, 1987, 103(1): 188-199. DOI:10.1016/0021-9517(87)90105-9. [12]LEUNG L W H, WEAVER M J. Extending the metal interface generality of surface-enhanced Raman spectroscopy: underpotential deposited layers of mercury, thallium, and lead on gold electrodes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 217(2): 367-384. DOI:10.1016/0022-0728(87)80229-2. [13]任斌,李剑锋,黄逸凡,等. 电化学表面增强拉曼光谱:现状和展望[J].电化学,2010,16(3):305-316. DOI:10.13208/j.electrochem.2010.03.009. [14]王姝凡,张雁玲,王少军,等. 表面增强拉曼光谱基底研究进展[J].当代化工,2022,51(1):206-210. DOI:10.13840/j.cnki.cn21-1457/tq.2022.01.044. [15]LI J F, HUANG Y F, DING Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395. DOI:10.1038/nature08907. [16]蒋治良,韦燕燕,王盛棉,等. 用2-巯基吡啶做分子探针SERRS光谱测定痕量金[J].广西师范大学学报(自然科学版),2012,30(3):218-223. DOI:10.16088/j.issn.1001-6600.2012.03.021. [17]LI J F, ZHANG Y J, DING S Y, et al. Core-shell nanoparticle-enhanced Raman spectroscopy[J]. Chemical Reviews, 2017, 117(7): 5002-5069. DOI:10.1021/acs.chemrev.6b00596. [18]苏敏,董金超,李剑锋. 单晶电极界面反应过程的电化学原位拉曼光谱研究[J]. 电化学,2020, 26(1):54-60. DOI:10.13208/j.electrochem.181241. [19]LI J F, ZHANG Y J, RUDNEV A V, et al. Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy: correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface[J]. Journal of the American Chemical Society, 2015, 137(6): 2400-2408. DOI:10.1021/ja513263j. [20]WANG Y H, WEI J, RADJENOVIC P, et al. In situ analysis of surface catalytic reactions using shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Analytical Chemistry, 2019, 91(3): 1675-1685. DOI:10.1021/acs.analchem.8b05499. [21]赵东江,马松艳,田喜强. CoSe2/C催化剂在电催化氧还原中的应用研究进展[J].广西师范大学学报(自然科学版),2021,39(5):30-43. DOI:10.16088/j.issn.1001-6600.2020112302. [22]SÖNCHEZ-SÖNCHEZ C M, BARD A J. Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy[J]. Analytical Chemistry, 2009, 81(19): 8094-8100. DOI:10.1021/ac901291v. [23]YU L, PAN X, CAO X M, et al. Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study[J]. Journal of Catalysis, 2011, 282(1): 183-190. DOI:10.1016/j.jcat.2011.06.015. [24]GÓMEZ-MARÍN A M, RIZO R, FELIU J M. Oxygen reduction reaction at Pt single crystals: a critical overview[J]. Catalysis Science and Technology, 2014, 4(6): 1685-1698. DOI:10.1039/c3cy01049j. [25]DONG J C, ZHANG X G, BRIEGA-MARTOS V, et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces[J]. Nature Energy, 2019, 4(1): 60-67. DOI:10.1038/s41560-018-0292-z. [26]DONG J C, SU M, BRIEGA-MARTOS V, et al. Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces[J]. Journal of the American Chemical Society, 2020, 142(2): 715-719. DOI:10.1021/jacs.9b12803. [27]CHEN H Q, ZHENG T L, HE Q G, et al. Local coordination and ordering engineering to design efficient core-shell oxygen reduction catalysts[J]. Journal of the Electrochemical Society, 2020, 167(14): 144501. DOI:10.1149/1945-7111/abc1a5. [28]ZE H J, CHEN X, WANG X T, et al. Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ SERS borrowing strategy[J]. Journal of the American Chemical Society, 2021, 143(3): 1318-1322. DOI:10.1021/jacs.0c12755. [29]WANG Y H, LE J B, LI W Q, et al. In situ spectroscopic insight into the origin of the enhanced performance of bimetallic nanocatalysts towards the oxygen reduction reaction (ORR)[J]. Angewandte Chemie International Edition, 2019, 58(45): 16062-16066. DOI:10.1002/anie.201908907. [30]KIM J, GEWIRTH A A. Mechanism of oxygen electroreduction on gold surfaces in basic media[J]. Journal of Physical Chemistry B, 2006, 110(6): 2565-2571. DOI:10.1021/jp0549529. [31]DURST J, SIEBEL A, SIMON C, et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism[J]. Energy and Environmental Science, 2014, 7(7): 2255-2260. DOI:10.1039/c4ee00440j. [32]LU S Q, ZHUANG Z B. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte[J]. Journal of the American Chemical Society, 2017, 139(14): 5156-5163. DOI:10.1021/jacs.7b00765. [33]WANG Y H, WANG X T, ZE H J, et al. Spectroscopic verification of adsorbed hydroxy intermediates in the bifunctional mechanism of the hydrogen oxidation reaction[J]. Angewandte Chemie International Edition, 2021, 60(11): 5708-5711. DOI:10.1002/anie.202015571. [34]JAMESH M I, SUN X M. Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting: a review[J]. Journal of Power Sources, 2018, 400: 31-68. DOI:10.1016/j.jpowsour.2018.07.125. [35]KIM J S, KIM B, KIM H, et al. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction[J]. Advanced Energy Materials, 2018, 8(11): 1702774. DOI:10.1002/aenm.201702774. [36]SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365. DOI:10.1039/c6cs00328a. [37]LOUIE M W, BELL A T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen[J]. Journal of the American Chemical Society, 2013, 135(33): 12329-12337. DOI:10.1021/ja405351s. [38]HUANG J W, LI Y Y, ZHANG Y D, et al. Identification of key reversible intermediates in self-reconstructed nickel-based hybrid electrocatalysts for oxygen evolution[J]. Angewandte Chemie International Edition, 2019, 58(48): 17458-17464. DOI:10.1002/anie.201910716. [39]YEO B S, BELL A T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen[J]. Journal of the American Chemical Society, 2011, 133(14): 5587-5593. DOI:10.1021/ja200559j. [40]FENG L L, YU G T, WU Y Y, et al. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. Journal of the American Chemical Society, 2015, 137(44): 14023-14026. DOI:10.1021/jacs.5b08186. [41]SHI Y M, DU W, ZHOU W, et al. Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2020, 59(50): 22470-22474. DOI:10.1002/anie.202011097. [42]MAHMOOD N, YAO Y D, ZHANG J W, et al. Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions[J]. Advanced Science, 2018, 5(2): 1700464. DOI:10.1002/advs.201700464. [43]ZHAO Y Q, LING T, CHEN S M, et al. Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2019, 58(35): 12252-12257. DOI:10.1002/anie.201905554. [44]MORALES-GUIO C G, HU X L. Amorphous molybdenum sulfides as hydrogen evolution catalysts[J]. Accounts of Chemical Research, 2014, 47(8): 2671-2681. DOI:10.1021/ar5002022. [45]CHEN J Z, LIU G G, ZHU Y Z, et al. Ag@MoS2 core-shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2[J]. Journal of the American Chemical Society, 2020, 142(15): 7161-7167. DOI:10.1021/jacs.0c01649. [46]BIRDJA Y Y, PÉREZ-GALLENT E, FIGUEIREDO M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019, 4(9): 732-745. DOI:10.1038/s41560-019-0450-y. [47]ZHAO Y R, CHANG X X, MALKANI A S, et al. Speciation of Cu surfaces during the electrochemical CO reduction reaction[J]. Journal of the American Chemical Society, 2020, 142(21): 9735-9743. DOI:10.1021/jacs.0c02354. [48]ZHU D D, LIU J L, QIAO S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016, 28(18): 3423-3452. DOI:10.1002/adma.201504766. [49]REN D, ANG B S H, YEO B S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts[J]. ACS Catalysis, 2016, 6(12): 8239-8247. DOI:10.1021/acscatal.6b02162. [50]DUTTA A, KUZUME A, RAHAMAN M, et al. Monitoring the chemical state of catalysts for CO2 electroreduction: an in operando study[J]. ACS Catalysis, 2015, 5(12): 7498-7502. DOI:10.1021/acscatal.5b02322. [51]VASILEFF A, ZHI X, XU C C, et al. Selectivity control for electrochemical CO2 reduction by charge redistribution on the surface of copper alloys[J]. ACS Catalysis, 2019, 9(10): 9411-9417. DOI:10.1021/acscatal.9b02312. |
No related articles found! |
|