Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 183-198.doi: 10.16088/j.issn.1001-6600.2021112707

Previous Articles     Next Articles

In-situ Raman Spectroscopy Study of Electrocatalytic Reaction Process

A Yaolin1, WANG Yaohui2, DONG Jinchao1*, LI Jianfeng1,2   

  1. 1. College of Energy, Xiamen University, Xiamen Fujian 361102, China;
    2. College of Chemistry and Chemical Engineering, Xiamen University, Xiamen Fujian 361005, China
  • Received:2021-11-27 Revised:2022-04-01 Online:2022-09-25 Published:2022-10-18

Abstract: Faced with the increasingly severe environmental pollution and energy crisis, the development of efficient and clean energy conversion technology has attracted more attention. Electrochemical energy conversion technology represented by electrocatalysis has developed rapidly in recent years because of its high efficiency and no pollution. However, the electrocatalytic reaction at the solid/liquid interface involves a variety of reaction species, which makes its mechanism research very difficult, and limits the rational design and development of high-efficiency electrocatalysts. Electrochemical in situ enhanced Raman spectroscopy has the advantages of high sensitivity, good selectivity and fingerprint recognition. It can reveal the electrocatalytic reaction process at the molecular and atomic levels. This paper reviews the application of electrochemical in situ enhanced Raman spectroscopy to study some critical electrocatalytic reactions, including oxygen reduction reaction, hydrogen oxidation reaction, oxygen evolution reaction, hydrogen evolution reaction, carbon dioxide reduction reaction, and so on. Finally, some problems faced by in situ enhanced Raman spectroscopy in the study of electrocatalytic reactions are summarized, and its development are briefly prospected.

Key words: in-situ enhanced Raman spectroscopy, electrocatalysis, reaction mechanism, intermediate species

CLC Number: 

  • O649
[1]SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: insights into materials design[J]. Science, 2017, 355(6321): eaad4998. DOI:10.1126/science.eaad4998.
[2]JIAO Y, ZHENG Y, JARONIEC M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44(8): 2060-2086. DOI:10.1039/c4cs00470a.
[3]BENCK J D, HELLSTERN T R, KIBSGAARD J. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials[J]. ACS Catalysis, 2014, 4(11): 3957-3971. DOI:10.1021/cs500923c.
[4]SHAO J D, WANG Y, GAO D F, et al. Copper-indium bimetallic catalysts for the selective electrochemical reduction of carbon dioxide[J]. Chinese Journal of Catalysis, 2020, 41(9): 1393-1400. DOI:10.1016/s1872-2067(20)63577-x.
[5]GASTEIGER H A, KOCHA S S, SOMPALLI B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 9-35. DOI:10.1016/j.apcatb.2004.06.021.
[6]SHAO M H, CHANG Q W, DODELET J P, et al. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chemical Reviews, 2016, 116(6): 3594-3657. DOI:10.1021/acs.chemrev.5b00462.
[7]TRINDELL J A, DUAN Z Y, HENKELMAN G, et al. Well-defined nanoparticle electrocatalysts for the refinement of theory [J]. Chemical Reviews, 2020, 120(2): 814-850. DOI:10.1021/acs.chemrev.9b00246.
[8]MARKOVIĆN M, ROSS P N. Surface science studies of model fuel cell electrocatalysts[J]. Surface Science Reports, 2002, 45(4/6): 117-229. DOI:10.1016/S0167-5729(01)00022-X.
[9]ZHU Y P, KUO T R, LI Y H, et al. Emerging dynamic structure of electrocatalysts unveiled by in situ X-ray diffraction/absorption spectroscopy[J]. Energy and Environmental Science, 2021, 14(4): 1928-1958. DOI:10.1039/d0ee03903a.
[10]LI J F, LI C Y, AROCA R F. Plasmon-enhanced fluorescence spectroscopy[J]. Chemical Society Reviews, 2017, 46(13): 3962-3979. DOI:10.1039/c7cs00169j.
[11]MCBREEN P H, MOSKOVITS M. A surface-enhanced Raman study of ethylene and oxygen interacting with supported silver catalysts[J]. Journal of Catalysis, 1987, 103(1): 188-199. DOI:10.1016/0021-9517(87)90105-9.
[12]LEUNG L W H, WEAVER M J. Extending the metal interface generality of surface-enhanced Raman spectroscopy: underpotential deposited layers of mercury, thallium, and lead on gold electrodes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 217(2): 367-384. DOI:10.1016/0022-0728(87)80229-2.
[13]任斌,李剑锋,黄逸凡,等. 电化学表面增强拉曼光谱:现状和展望[J].电化学,2010,16(3):305-316. DOI:10.13208/j.electrochem.2010.03.009.
[14]王姝凡,张雁玲,王少军,等. 表面增强拉曼光谱基底研究进展[J].当代化工,2022,51(1):206-210. DOI:10.13840/j.cnki.cn21-1457/tq.2022.01.044.
[15]LI J F, HUANG Y F, DING Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395. DOI:10.1038/nature08907.
[16]蒋治良,韦燕燕,王盛棉,等. 用2-巯基吡啶做分子探针SERRS光谱测定痕量金[J].广西师范大学学报(自然科学版),2012,30(3):218-223. DOI:10.16088/j.issn.1001-6600.2012.03.021.
[17]LI J F, ZHANG Y J, DING S Y, et al. Core-shell nanoparticle-enhanced Raman spectroscopy[J]. Chemical Reviews, 2017, 117(7): 5002-5069. DOI:10.1021/acs.chemrev.6b00596.
[18]苏敏,董金超,李剑锋. 单晶电极界面反应过程的电化学原位拉曼光谱研究[J]. 电化学,2020, 26(1):54-60. DOI:10.13208/j.electrochem.181241.
[19]LI J F, ZHANG Y J, RUDNEV A V, et al. Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy: correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface[J]. Journal of the American Chemical Society, 2015, 137(6): 2400-2408. DOI:10.1021/ja513263j.
[20]WANG Y H, WEI J, RADJENOVIC P, et al. In situ analysis of surface catalytic reactions using shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Analytical Chemistry, 2019, 91(3): 1675-1685. DOI:10.1021/acs.analchem.8b05499.
[21]赵东江,马松艳,田喜强. CoSe2/C催化剂在电催化氧还原中的应用研究进展[J].广西师范大学学报(自然科学版),2021,39(5):30-43. DOI:10.16088/j.issn.1001-6600.2020112302.
[22]SÖNCHEZ-SÖNCHEZ C M, BARD A J. Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy[J]. Analytical Chemistry, 2009, 81(19): 8094-8100. DOI:10.1021/ac901291v.
[23]YU L, PAN X, CAO X M, et al. Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study[J]. Journal of Catalysis, 2011, 282(1): 183-190. DOI:10.1016/j.jcat.2011.06.015.
[24]GÓMEZ-MARÍN A M, RIZO R, FELIU J M. Oxygen reduction reaction at Pt single crystals: a critical overview[J]. Catalysis Science and Technology, 2014, 4(6): 1685-1698. DOI:10.1039/c3cy01049j.
[25]DONG J C, ZHANG X G, BRIEGA-MARTOS V, et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces[J]. Nature Energy, 2019, 4(1): 60-67. DOI:10.1038/s41560-018-0292-z.
[26]DONG J C, SU M, BRIEGA-MARTOS V, et al. Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces[J]. Journal of the American Chemical Society, 2020, 142(2): 715-719. DOI:10.1021/jacs.9b12803.
[27]CHEN H Q, ZHENG T L, HE Q G, et al. Local coordination and ordering engineering to design efficient core-shell oxygen reduction catalysts[J]. Journal of the Electrochemical Society, 2020, 167(14): 144501. DOI:10.1149/1945-7111/abc1a5.
[28]ZE H J, CHEN X, WANG X T, et al. Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ SERS borrowing strategy[J]. Journal of the American Chemical Society, 2021, 143(3): 1318-1322. DOI:10.1021/jacs.0c12755.
[29]WANG Y H, LE J B, LI W Q, et al. In situ spectroscopic insight into the origin of the enhanced performance of bimetallic nanocatalysts towards the oxygen reduction reaction (ORR)[J]. Angewandte Chemie International Edition, 2019, 58(45): 16062-16066. DOI:10.1002/anie.201908907.
[30]KIM J, GEWIRTH A A. Mechanism of oxygen electroreduction on gold surfaces in basic media[J]. Journal of Physical Chemistry B, 2006, 110(6): 2565-2571. DOI:10.1021/jp0549529.
[31]DURST J, SIEBEL A, SIMON C, et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism[J]. Energy and Environmental Science, 2014, 7(7): 2255-2260. DOI:10.1039/c4ee00440j.
[32]LU S Q, ZHUANG Z B. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte[J]. Journal of the American Chemical Society, 2017, 139(14): 5156-5163. DOI:10.1021/jacs.7b00765.
[33]WANG Y H, WANG X T, ZE H J, et al. Spectroscopic verification of adsorbed hydroxy intermediates in the bifunctional mechanism of the hydrogen oxidation reaction[J]. Angewandte Chemie International Edition, 2021, 60(11): 5708-5711. DOI:10.1002/anie.202015571.
[34]JAMESH M I, SUN X M. Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting: a review[J]. Journal of Power Sources, 2018, 400: 31-68. DOI:10.1016/j.jpowsour.2018.07.125.
[35]KIM J S, KIM B, KIM H, et al. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction[J]. Advanced Energy Materials, 2018, 8(11): 1702774. DOI:10.1002/aenm.201702774.
[36]SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365. DOI:10.1039/c6cs00328a.
[37]LOUIE M W, BELL A T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen[J]. Journal of the American Chemical Society, 2013, 135(33): 12329-12337. DOI:10.1021/ja405351s.
[38]HUANG J W, LI Y Y, ZHANG Y D, et al. Identification of key reversible intermediates in self-reconstructed nickel-based hybrid electrocatalysts for oxygen evolution[J]. Angewandte Chemie International Edition, 2019, 58(48): 17458-17464. DOI:10.1002/anie.201910716.
[39]YEO B S, BELL A T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen[J]. Journal of the American Chemical Society, 2011, 133(14): 5587-5593. DOI:10.1021/ja200559j.
[40]FENG L L, YU G T, WU Y Y, et al. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. Journal of the American Chemical Society, 2015, 137(44): 14023-14026. DOI:10.1021/jacs.5b08186.
[41]SHI Y M, DU W, ZHOU W, et al. Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2020, 59(50): 22470-22474. DOI:10.1002/anie.202011097.
[42]MAHMOOD N, YAO Y D, ZHANG J W, et al. Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions[J]. Advanced Science, 2018, 5(2): 1700464. DOI:10.1002/advs.201700464.
[43]ZHAO Y Q, LING T, CHEN S M, et al. Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2019, 58(35): 12252-12257. DOI:10.1002/anie.201905554.
[44]MORALES-GUIO C G, HU X L. Amorphous molybdenum sulfides as hydrogen evolution catalysts[J]. Accounts of Chemical Research, 2014, 47(8): 2671-2681. DOI:10.1021/ar5002022.
[45]CHEN J Z, LIU G G, ZHU Y Z, et al. Ag@MoS2 core-shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2[J]. Journal of the American Chemical Society, 2020, 142(15): 7161-7167. DOI:10.1021/jacs.0c01649.
[46]BIRDJA Y Y, PÉREZ-GALLENT E, FIGUEIREDO M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019, 4(9): 732-745. DOI:10.1038/s41560-019-0450-y.
[47]ZHAO Y R, CHANG X X, MALKANI A S, et al. Speciation of Cu surfaces during the electrochemical CO reduction reaction[J]. Journal of the American Chemical Society, 2020, 142(21): 9735-9743. DOI:10.1021/jacs.0c02354.
[48]ZHU D D, LIU J L, QIAO S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016, 28(18): 3423-3452. DOI:10.1002/adma.201504766.
[49]REN D, ANG B S H, YEO B S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts[J]. ACS Catalysis, 2016, 6(12): 8239-8247. DOI:10.1021/acscatal.6b02162.
[50]DUTTA A, KUZUME A, RAHAMAN M, et al. Monitoring the chemical state of catalysts for CO2 electroreduction: an in operando study[J]. ACS Catalysis, 2015, 5(12): 7498-7502. DOI:10.1021/acscatal.5b02322.
[51]VASILEFF A, ZHI X, XU C C, et al. Selectivity control for electrochemical CO2 reduction by charge redistribution on the surface of copper alloys[J]. ACS Catalysis, 2019, 9(10): 9411-9417. DOI:10.1021/acscatal.9b02312.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[2] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[3] TIE Jun, LONG Juanjuan, ZHENG Lu, NIU Yue, SONG Yanlin. Tomato Leaf Disease Recognition Model Based on SK-EfficientNet[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 104 -114 .
[4] WENG Ye, SHAO Desheng, GAN Shu. Principal Component Liu Estimation Method of the Equation    Constrained Ⅲ-Conditioned Least Squares[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 115 -125 .
[5] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[6] HE Qing, LIU Jian, WEI Lianfu. Single-Photon Detectors as the Physical Limit Detections of Weak Electromagnetic Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 1 -23 .
[7] TIAN Ruiqian, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, JIANG Pinqun, CAI Chaobo. Research Progress of Successive Approximation Register Analog-to-Digital Converter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 24 -35 .
[8] ZHANG Shichao, LI Jiaye. Knowledge Matrix Representation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 36 -48 .
[9] LIANG Yuting, LUO Yuling, ZHANG Shunsheng. Review on Chaotic Image Encryption Based on Compressed Sensing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 49 -58 .
[10] HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59 -71 .