Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 168-182.doi: 10.16088/j.issn.1001-6600.2022011804

Previous Articles     Next Articles

Radical Rare-earth Metal Complexes: Advances, Challenges and Prospects

YAN Haihan, ZHANG Wenxiong*   

  1. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received:2022-01-18 Revised:2022-04-11 Online:2022-09-25 Published:2022-10-18

Abstract: In the family of rare-earth metal complexes, radical rare-earth metal complexes have attracted great attention of the researchers in the past 30 years because of their unique chemical reactivities and magnetic properties. To fine-tune the different properties of radical rare-earth metal complexes, scientists have developed different combinations of radical ligands, closed-shell ligands and rare-earth metal centers. Herein, the reported structures, ligand types, coordination modes, chemical reactivity and magnetic properties of radical rare-earth metal complexes were reviewed according to the history of this field, and was divided into two parts as neutral/anionic radical ligands. The outlook of this field was also presented.

Key words: rare-earth metal, radical, ligand, coordination chemistry, complex

CLC Number: 

  • O614.33
[1]钱长涛. 王春红, 陈耀峰. 稀土金属有机配合物化学60年[J]. 化学学报, 2014, 72(8): 883-905.
[2]EVANS W J. Perspectives in reductive lanthanide chemistry[J]. Coordination Chemistry Reviews, 2000, 206/207: 263-283.
[3]CHEN J Z, GAO Y S, MARKS T J. Early transition metal catalysis for olefin-polar monomer copolymerization[J]. Angewandte Chemie International Edition, 2020, 59(35): 14726-14735.
[4]DONATI F, RUSPONI S, STEPANOW S, et al. Magneti cremanence in single atoms[J]. Science, 2016, 352(6283): 318-321.
[5]ZHU Z H, GUO M, LI X L, et al. Molecular magnetism of lanthanide: advances and perspectives[J]. Coordination Chemistry Reviews, 2019, 378: 350-364.
[6]MARIN R, BRUNET G, MURUGESU M. Shining new light on multifunctional lanthanide single-molecule magnets[J]. Angewandte Chemie International Edition, 2021, 60(4): 1728-1746.
[7]BENELLI C, CANESCHI A, GALLESCHI D, et al. Structureand magnetic properties of a gadolinium hexafluoroacetylacetonate adduct with the radical 4,4,5,5-tetramethyl-2-phenyl-4,5-dihydro-1h-imidazole 3-oxide 1-oxyl[J]. Angewandte Chemie International Edition in English, 1987, 26(9): 913-915.
[8]BENELLI C, CANESCHI A, GATTESCHI D, et al. Structure andmagnetic properties of linear-chain complexes of rare-earth ions (gadolinium, europium) with nitronyl nitroxides[J]. Inorganic Chemistry, 1989, 28(2): 275-280.
[9]BENELLI C, CANESCHI A, GATTESCHI D, et al. Linear-chain gadolinium(III) nitronyl nitroxide complexes with dominant next-nearest-neighbor magnetic interactions[J]. Inorganic Chemistry, 1990, 29(21): 4223-4228.
[10]BENELLI C, CANESCHI A, GATTESCHI D, et al. Gadolinium(III)complexes with pyridine-substituted nitronyl nitroxide radicals[J]. Inorganic Chemistry, 1992, 31(5): 741-746.
[11]LESCOP C, LUNEAU D, BELORIZKY E, et al. Unprecedented antiferromagnetic metal-ligand interactions in gadolinium-nitroxide derivatives[J]. Inorganic Chemistry, 1999, 38(24): 5472-5473.
[12]LESCOP C, BUSSIÈRE G, BEAULAC R, et al. Magnetic and optical properties of nitroxide radicals and their lanthanide complexes[J]. Journal of Physics and Chemistry of Solids, 2004, 65(4): 773-779.
[13]CLOKE F G N, DE LEMOS H C, SAMEH A A. Homoleptic diazadiene complexes of titanium, yttrium, and some lanthanoid elements[J]. Journal of the Chemical Society, Chemical Communications, 1986(17): 1344-1345.
[14]KHUSNIYAROV M M, WEYHERMÜLLER T, BILL E, et al. Reversible electron transfer coupled to spin crossover in an iron coordination salt in the solid state[J]. Angewandte Chemie International Edition, 2008, 47(7): 1228-1231.
[15]BOGANI L, SANGREGORIO C, SESSOLI R, et al. Molecular engineering for single-chain-magnet behavior in a one-dimensional dysprosium-nitronyl nitroxide compound[J]. Angewandte Chemie International Edition, 2005, 44(36): 5817-5821.
[16]GATTESCHI D, SESSOLI R, VILLAIN J, Molecularnanomagnets[M]. Oxford: Oxford University Press, 2006: 1-389.
[17]XU J X, MA Y, XU G F, et al. A four-spin ring with alternating magnetic interactions formed by pyridine-substituted nitronyl nitroxide radicals and Gd(III) ions: crystal structure and magnetic properties[J]. Inorganic Chemistry Communications, 2008, 11(11): 1356-1358.
[18]MENG Y S, LIU T. Manipulating spin transition to achieve switchable multifunctions[J]. Accounts of Chemical Research, 2019, 52(5): 1369-1379.
[19]IKEGAYA N, KANETOMO T, MURAKAMI R, et al. Triplyradical-coordinated gadolinium(III) complex as a high-spin s=5 assembly[J]. Chemistry Letters, 2011, 41(1): 82-83.
[20]LU E L, CHU J X, CHEN Y F. Scandiumterminal imido chemistry[J]. Accounts of Chemical Research, 2018, 51(2): 557-566.
[21]COMBA P, MARTIN B. Chapter nine-molecular modeling of transition metal and rare earth coordination compounds[M]. Orlando: Academic Press, 2019: 305-322.
[22]HU P, ZHU M, MEI X L, et al. Single-molecule magnets based on rare earth complexes with chelating benzimidazole-substituted nitronyl nitroxide radicals[J]. Dalton Transactions, 2012, 41(48): 14651-14656.
[23]FAIZOVA R, FADAEI-TIRANI F, BERNIER-LATMANI R, et al. Ligand-supported facile conversion of uranyl(VI) into uranium(IV) in organic and aqueous media[J]. Angewandte Chemie International Edition, 2020, 59(17): 6756-6759.
[24]MEI X L, MA Y, LI L C, et al. Ligand field-tuned single-molecule magnet behaviour of 2p-4f complexes[J]. Dalton Transactions, 2012, 41(2): 505-511.
[25]DING Y S, CHILTON N F, WINPENNY R E P, et al. On approaching the limit of molecular magnetic anisotropy: a near-perfect pentagonal bipyramidal dysprosium(III) single-molecule magnet[J]. Angewandte Chemie International Edition, 2016, 55(52): 16071-16074.
[26]MENG Y S, JIANG S D, WANG B W, et al. Understanding the magnetic anisotropy toward single-ion magnets[J]. Accounts of Chemical Research, 2016, 49(11): 2381-2389.
[27]NISHIURA M, GUO F, HOU Z M. Half-sandwich rare-earth-catalyzed olefin polymerization, carbometalation, and hydroarylation[J]. Accounts of Chemical Research, 2015, 48(8): 2209-2220.
[28]KING R B, Chapter one-metal-metal interactions in binuclear cyclopentadienylmetal carbonyls: extending insight from experimental work through computational studies[M]// VAN ELDIK R, PUCHTA R. Advances in Inorganic Chemistry. Orlando: Academic Press, 2019: 3-32.
[29]CANESCHI A, DEI A, GATTESCHI D, et al. Antiferromagnetic coupling in a gadolinium(III) semiquinonato complex [J]. Angewandte Chemie International Edition, 2000, 39(1): 246-248.
[30]FEGLER W, VENUGOPAL A, KRAMER M, et al. Molecular rare-earth-metal hydrides in non-cyclopentadienyl environments[J]. Angewandte Chemie International Edition, 2015, 54(6): 1724-1736.
[31]DEMIR S, JEON I R, LONG J R, et al. Radical ligand-containing single-molecule magnets[J]. Coordination Chemistry Reviews, 2015, 289/290: 149-176.
[32]KANETOMO T, ISHIDA T. Preparation and characterization of [Gd(hfac)3(DTBN)(H2O)](DTBN=Di-t-butyl Nitroxide). Ferromagnetic Gd3+-Gd3+ super-superexchange[J]. Chemical Communications, 2014, 50(19): 2529-2531.
[33]ISHIDA T, MURAKAMI R, KANETOMO T, et al. Magnetic study on radical-gadolinium(III) complexes. Relationship between the exchange coupling and coordination structure[J]. Polyhedron, 2013, 66: 183-187.
[34]NOREL L, CHAMOREAU L M, JOURNAUX Y, et al. Verdazyl-lanthanide(III) one dimensional compounds: synthesis, structure and magnetic properties[J]. Chemical Communications, 2009(17): 2381-2383.
[35]KAIM W. The transition metal coordination chemistry of anion radicals[J]. Coordination Chemistry Reviews, 1987, 76: 187-235.
[36]DELANO I V F, CASTELLANOS E, McCRACKEN J, et al. A rare earth metallocene containing a 2,2′-azopyridyl radical anion[J]. Chemical Science, 2021, 12(46): 15219-15228.
[37]RECKNAGEL A, NOLTEMEYER M, EDELMANN F T. Organolanthanid(II)chemie:reaktionen von Cp2Sm(THF)2 mit 1,4-diazadienen und cyclooctatetraen[J]. Journal of Organometallic Chemistry, 1991, 410(1): 53-61.
[38]KAUPP M, STOLL H, PREUSS H, et al. Theoretical and experimental study of diamagnetic and paramagnetic products from thermal and light-induced alkyl transfer between zinc or magnesium dialkyls and 1,4-diaza-1,3-butadiene substrates [J]. Journal of the American Chemical Society, 1991, 113(15): 5606-5618.
[39]BOCHKAREV M N, TRIFONOV A A, CLOKE F G N, et al. Synthesis,magnetic susceptibility and X-ray crystal structure of (tBuNCHCHNtBu)3Yb[J]. Journal of Organometallic Chemistry, 1995, 486(1/2): 177-182.
[40]TRIFONOV A A. Reactions of ytterbocenes with diimines: steric manipulation of reductive reactivity[J]. European Journal of Inorganic Chemistry, 2007(20): 3151-3167.
[41]MOORE J A, COWLEY A H, GORDON J C. Mediating oxidation states in decamethyleuropocene complexes. The role of the diazabutadiene fragment[J]. Organometallics, 2006, 25(22): 5207-5209.
[42]WALTER M D, BERG D J, ANDERSEN R A. Coordination of 1,4-diazabutadiene ligands to decamethylytterbocene: additional examples of spin coupling in ytterbocene complexes[J]. Organometallics, 2007, 26(9): 2296-2307.
[43]CUI P, CHEN Y F, WANG G P, et al. Divalent ytterbium boratabenzene complex (C5H5BNPh2)2Yb (THF)2: synthesis, structure, and solvent-mediated redox transformation[J]. Organometallics, 2008, 27(15): 4013-4016.
[44]TRIFONOV A A, FEDOROVA E A, IKORSKII V N, et al. Solvent-mediated redox transformations of ytterbium bis (indenyl)diazabutadiene complexes[J]. European Journal of Inorganic Chemistry, 2005, 2005(14): 2812-2818.
[45]TRIFONOV A A, BOROVKOV I A, FEDOROVA E A, et al. Ytterbocenes as one- and two-electron reductants in their reactions with diazadienes: YbIII mixed-ligand bent-sandwich complexes containing a dianion of diazabutadiene[J]. Chemistry: a European Journal, 2007, 13(17): 4981-4987.
[46]FEDUSHKIN I L, MASLOVA O V, BARANOV E V, et al. Redox isomerism in the lanthanide complex[(dpp-Bian)Yb(DME)(μ-Br)]2 (dpp-bian=1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene)[J]. Inorganic Chemistry, 2009, 48(6): 2355-2357.
[47]FEDUSHKIN I L, MASLOVA O V, LUKOYANOV A N, et al. Anionic and neutral bis (diimine)lanthanide complexes [J]. Comptes Rendus Chimie, 2010, 13(6/7): 584-592.
[48]FEDUSHKIN I L, MASLOVA O V, MOROZOV A G, et al. Genuine redox isomerism in a rare-earth-metal complex[J]. Angewandte Chemie International Edition, 2012, 51(42): 10584-10587.
[49]TRIFONOV A A, GUDILENKOV I D, LARIONOVA J, et al. Half-sandwich lanthanide(III) complexes coordinated by two α-iminopyridine radical anions[J]. Organometallics, 2009, 28(23): 6707-6713.
[50]TRIFONOV A A, SHESTAKOV B G, LYUBOV D M, et al. Synthesis,structure, and magnetic properties of a YbIII complex with the iminopyridine radical-anionic ligand[J]. Russian Chemical Bulletin, 2018, 67(1): 50-55.
[51]SCHULTZ M, BONCELLA J M, BERG D J, et al. Coordination of 2,2′-bipyridyl and 1,10-phenanthroline to substituted ytterbocenes: an experimental investigation of spin coupling in lanthanide complexes[J]. Organometallics, 2002, 21(3): 460-472.
[52]BOOTH C H, WALTER M D, KAZHDAN D, et al. Decamethylytterbocene complexes of bipyridines and diazabutadienes: multiconfigurational ground states and open-shell singlet formation[J]. Journal of the American Chemical Society, 2009, 131(18): 6480-6491.
[53]BOOTH C H, KAZHDAN D, WERKEMA E L, et al. Intermediate-valence tautomerism in decamethylytterbocene complexes of methyl-substituted bipyridines[J]. Journal of the American Chemical Society, 2010, 132(49): 17537-17549.
[54]CANESCHI A, DEI A, GATTESCHI D, et al. Antiferromagnetic coupling between rare earth ions and semiquinones in a series of 1∶1 complexes[J]. Dalton Transactions, 2004(7): 1048-1055.
[55]WERNER D, ZHAO X F, BEST S P, et al. Bulky ytterbium formamidinates stabilise complexes with radical ligands, and related samarium “tetracyclone” chemistry[J]. Chemistry: a European Journal, 2017, 23(9): 2084-2102.
[56]VAN VELZEN N J C, HARDER S. Deca-arylsamarocene: an unusually inert Sm(II) sandwich complex[J]. Organometallics, 2018, 37(14): 2263-2271.
[57]FEDUSHKIN I L, MASLOVA O V, HUMMERT M, et al. One- and two-electron-transfer reactions of (dpp-Bian)Sm(dme)3 [J]. Inorganic Chemistry, 2010, 49(6): 2901-2910.
[58]MACDONALD M R, ZILLER J W, EVANS W J. Coordination and reductive chemistry of tetraphenylborate complexes of trivalent rare earth metallocene cations, [(C5Me5)2Ln][(μ-Ph)2BPh2][J]. Inorganic Chemistry, 2011, 50(9): 4092-4106.
[59]ORTU F, LIU J J, BURTON M, et al. Analysis of lanthanide-radical magnetic interactions in Ce(III) 2, 2′-bipyridyl complexes[J]. Inorganic Chemistry, 2017, 56(5): 2496-2505.
[60]KISSEL A A, LYUBOV D M, MAHROVA T V, et al. Rare-earth dichloro and bis(alkyl) complexes Supported by bulky amido-imino ligand. Synthesis, structure, reactivity and catalytic activity in isoprene polymerization[J]. Dalton Transactions, 2013, 42(25): 9211-9225.
[61]HOU Z M, YAMAZAKI H, KOBAYASHI K, et al. Novel crystal structure of ytterbium(II)-benzophenone dianion complex and its reaction with 2,6-di-tert-butyl-4-methylphenol[J]. Journal of the Chemical Society, Chemical Communications, 1992(9): 722-724.
[62]HOU Z M, MIYANO T, YAMAZAKI H, et al. Well-defined metal ketyl complex: Sm(ketyl)(OAr)2 (THF)2 and its reversible coupling to a disamarium(III) pinacolate[J]. Journal of the American Chemical Society, 1995, 117(15): 4421-4422.
[63]HOU Z M, WAKATSUKI Y. Trapping of radicals in the coordination spheres of metals[J]. Chemistry: a European Journal, 1997, 3(7): 1005-1008.
[64]HOU Z M, FUJITA A, ZHANG Y G, et al. One-electron reduction of aromatic ketones by low-valent lanthanides. Isolation, structural characterization, and reactivity of lanthanide ketyl complexes[J]. Journal of the American Chemical Society, 1998, 120(4): 754-766.
[65]ISHIKAWA N, SUGITA M, ISHIKAWA T, et al. Lanthanide double-decker complexes functioning as magnets at the single-molecular level[J]. Journal of the American Chemical Society, 2003, 125(29): 8694-8695.
[66]ISHIKAWA N, SUGITA M, TANAKA N, et al. Upward temperature shift of the intrinsic phase lag of the magnetization of bis(phthalocyaninato)terbium by ligand oxidation creating an S=1/2 spin[J]. Inorganic Chemistry, 2004, 43(18): 5498-5500.
[67]GANIVET C R, BALLESTEROS B, DE LA TORRE G, et al. Influence of peripheral substitution on the magnetic behavior of single-ion magnets based on homo- and heteroleptic Tb(Ⅲ) bis (phthalocyaninate)[J]. Chemistry: a European Journal, 2013, 19(4): 1457-1465.
[68]DEMIR S, ZADROZNY J M, NIPPE M, et al. Exchange coupling and magnetic blocking in bipyrimidyl radical-bridged dilanthanide complexes[J]. Journal of the American Chemical Society, 2012, 134(45): 18546-18549.
[69]RINEHART J D, FANG M, EVANS W J, et al. Strong exchange and magnetic blocking in N3-2-radical-bridged lanthanide complexes[J]. Nature Chemistry, 2011, 3(7): 538-542.
[70]GOULD C A, MU E, VIERU V, et al. Substituent effects on exchange coupling and magnetic relaxation in 2,2′-bipyrimidine radical-bridged dilanthanide complexes[J]. Journal of the American Chemical Society, 2020, 142(50): 21197-21209.
[71]YAN H H, WU B T, ZHAO X K, et al. Rare-earth metal boroxide with formal triple metal-oxygen orbital interaction: synthesis from B(C6F5)3·H2O and radical-anion ligated rare-earth metal amides[J]. CCS Chemistry, 2020, 3(11): 2772-2781.
[72]YAN H H, WU B T, MENG Y S, et al. Synthesis,structure, and magnetic properties of rare-earth bis(diazabutadiene) diradical complexes[J]. Inorganic Chemistry, 2021, 60(3): 1315-1319.
[73]YAN H H, WEI J N, ZHANG W X. Synthesis,structures, and reactivity of diazabutadiene-ligated rare-earth radical complexes bearing adaptable auxiliary ligands[J]. Organometallics, 2021, 40(19): 3245-3252.
[74]ZHANG R P, ZHANG R Z, JIAN R J, et al. Bio-inspired lanthanum-ortho-quinone catalysis for aerobic alcohol oxidation: semi-quinone anionic radical as redox ligand[J]. Nature Communications, 2022, 13(1): 428.
[1] ZHANG Junjian. Review on Nonparametric Likelihood and Their Applications [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 150-159.
[2] SHAO Huiting, YANG Qigui. Complex Dynamics of a Six-dimensional Hyperchaotic System with Four Positive Lyapunov Exponents [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 433-444.
[3] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1-21.
[4] LI Muhang, HAN Meng, CHEN Zhiqiang, WU Hongxin, ZHANG Xilong. Survey of Algorithms Oriented to Complex High Utility Pattern Mining [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 13-30.
[5] REN Wenwen, SUN Yunze, LI Rong. Study on Lytic Polysaccharide Monooxygenase Nanoflower for Immobilization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 158-169.
[6] WENG Xiaoxiong, XIE Zhipeng. Study on Freeway Nodes Importance Based on Multilayer Complex Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 78-88.
[7] RUAN Wenjing, YANG Qigui. Research on Complex Dynamics of a New Four-dimensional Hyperchaotic System with Finite and Infinite Isolated Singularities [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 173-181.
[8] HE Hanji, DENG Guangming, GE Menglan. Study on the Spatial Correlation of Air Quality in Central Plains Urban Agglomeration [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 151-162.
[9] WANG Junjie, WEN Xueyan, XU Kesheng, YU Ming. An Improved Stack Algorithm Based on Local Sensitive Hash [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 21-31.
[10] XIE Tingting, XIE Yao, NI Qingling. Synthesis, Characterization and Crystal Structures of Complexes ContainingOrganic Phosphine Gold Acetylene and Triazoles [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 92-99.
[11] HONG Lingling, YANG Qigui. Research on Complex Dynamics of a New 4D Hyperchaotic System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 96-105.
[12] LI Juexuan,ZHAO Ming. Influence of Average Degree and Scale of Network on Partial Synchronization of Complex Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 115-124.
[13] YANG Zhengmin, ZHANG Yanjun, WANG Shengyun, HU Xianyun, Li Jun. Extraction and Free Radical Scavenging Activity of Polysaccharide and Polyphenol from the Ginkgo biloba L. Shell [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 105-110.
[14] WANG Yi, ZOU Yanli, LI Ke, HUANG Li. The Influence of the Distributed Power Station Connection Modeson the Power Grid Synchronization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 24-31.
[15] NIE Yingtao,PENG Fenglin,LI Shaojie,WANG Ziwei,OU Chan. Effect of Polysaccharides of the Euphoria Longan (Lour.) Steudin Antifatigue by Reducing the Level of Oxygen Free Radicals [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 157-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[2] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[3] TIE Jun, LONG Juanjuan, ZHENG Lu, NIU Yue, SONG Yanlin. Tomato Leaf Disease Recognition Model Based on SK-EfficientNet[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 104 -114 .
[4] WENG Ye, SHAO Desheng, GAN Shu. Principal Component Liu Estimation Method of the Equation    Constrained Ⅲ-Conditioned Least Squares[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 115 -125 .
[5] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[6] HE Qing, LIU Jian, WEI Lianfu. Single-Photon Detectors as the Physical Limit Detections of Weak Electromagnetic Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 1 -23 .
[7] TIAN Ruiqian, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, JIANG Pinqun, CAI Chaobo. Research Progress of Successive Approximation Register Analog-to-Digital Converter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 24 -35 .
[8] ZHANG Shichao, LI Jiaye. Knowledge Matrix Representation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 36 -48 .
[9] LIANG Yuting, LUO Yuling, ZHANG Shunsheng. Review on Chaotic Image Encryption Based on Compressed Sensing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 49 -58 .
[10] HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59 -71 .