Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 127-137.doi: 10.16088/j.issn.1001-6600.2021120703

Previous Articles     Next Articles

Compressible Non-conservative Two-phase Flow Model

ZHANG Yinghui*, YE Qin   

  1. School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2021-12-07 Revised:2022-01-13 Online:2022-09-25 Published:2022-10-18

Abstract: The compressible non-conservative two-phase flow models are widely used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on.This paper makes a review on the study of three types of compressible non-conservative two-phase flow models with equal pressure and capillary effect, unequal pressure without capillary effect, and equal pressure without capillary effect. Then, introduces the research developments of these three types of compressible non-conservative two-phase flow models, respectively.In particular, the linear system of the high-dimensional compressible non-conservative two-phase flow model with equal pressure without capillary effect contains zero eigenvalue, which makes the mathematical analysis of this problem very difficult. The new model has no mathematical results so far, and will be the focus of future work.

Key words: compressible non-conservative two-phase flow model, capillary effect, Cauchy problem, well-posedness, decay rate

CLC Number: 

  • O29
[1]ISHII M. Thermo-fluid dynamic theory of two-phase flow[M]. Paris: Eyrolles, 1975.
[2]BEAR J. Dynamics of fluids in porous media[M]. Environmental Science Series, New York: Elsevier, 1972.
[3]BAHOURI H, CHEMIN J, DANCHIN R. Fourier analysis and nonlinear partial differential equations[M].Grundlehren der Mathematischen Wissenschaften, Heidelberg: Springer, 2011.
[4]GODLEWSKI E, RAVIART P A. Hyperbolic systems of conservation laws[M]. Paris: Ellipses, 1991.
[5]KOLEV N, LYCZKOWSKI R. Multiphase flow dynamics: Vol. 1: Fundamentalsz[M]. Berlin: Springer, 2003.
[6]NOVOTN M, POKORN A. Weak solutions for some compressible multicomponent fluid models[J]. Archive for Rational Mechanics and Analysis, 2020, 235(1): 355-403.
[7]PROSPERETTI A, TRYGGVASON G. Computational methods for multiphase flow[M].Cambridge: Cambridge University Press, 2007.
[8]YAO L, ZHU C J, GUO Z H. Blow-up criterion for 3d viscous liquid-gas two-phase flow model[J]. Journal of Mathematical Analysis and Applications, 2012, 395(1): 175-190.
[9]EVJE S. Global weak solutions for a compressible gas-liquid model with well-formation interaction[J]. Journal of Differential Equations, 2011, 251(8): 2352-2386.
[10]EVJE S. A compressible two-phase model with pressure-dependent well-reservoir interaction[J]. Siam Journal on Mathematical Analysis, 2013, 45(2): 518-546.
[11]EVJE S. Genuine two-phase flow dynamics with a free interface separating gas-liquid mixture from gas[J]. Siam Journal on Mathematical Analysis, 2013, 45(5): 2894-2923.
[12]EVJE S, FLATTEN T, FRIIS H. Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum[J].Nonlinear Analysis: Theory, Methods Applications, 2009, 11(11): 3864-3886.
[13]EVJE S, KARLSEN K. Analysis of a compressible gas-liquid model by oil well control operations[J]. Acta Mathematica Scientia, 2012, 32(1):295-314.
[14]EVJE S, KENNETH B, KARLSEN H. Global existence of weak solutions for a viscous two-phase model[J]. Journal of Differential Equations, 2008, 245(9): 2660-2703.
[15]EVJE S, KARLSEN K. Global weak solutions for a viscous liquid-gas model with singular pressure law[J].Communications on Pure Applied Analysis, 2009, 8(6): 1867-1894.
[16]EVJE S, LIU Q Q, ZHU C J. Asymptotic stability of the compressible gas-liquid model with well-formation interaction and gravity[J]. Journal of Differential Equations, 2014, 257(9): 3226-3271.
[17]EVJE S, SOLEN S. Relaxation limit of a compressible gas-liquid model with well-reservoir interaction[J]. Zeitschrift für Angewandte Mathematik und Physik. ZAMP. Journal of Applied Mathematics and Physics. Journal de Mathématiques et de Physique Appliquées, 2017, 68(1): 23-25.
[18]EVJE S, WANG W J, WEN H Y. Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model[J].Archive for Rational Mechanics Analysis, 2016, 221(3):1285-1316.
[19]FRIIS H, EVJE S. Asymptotic behavior of a compressible two-phase model with well-formation interaction[J]. Journal of Differential Equations, 2013, 254(9): 3957-3993.
[20]洪广益.可压缩Navier-Stokes方程组及相关模型解的最优衰减率研究[D]. 广州:华南理工大学, 2019.
[21]WANG Y H, WEN H Y, YAO L. On a non-conservative compressible two-fluid model in a bounded domain: global existence and uniqueness[J].Journal of Mathematical Fluid Mechanics, 2021, 23(1): 4-24.
[22]王盈辉. 三维非守恒可压缩两相流模型的时间周期解[D]. 西安:西北大学, 2018.
[23]WEN H Y, YAO L, ZHU C J. A blow-up criterion of strong solution to a 3d viscous liquid-gas two-phase flow model with vacuum[J]. Journal de Mathématiques Pures et Appliquées, 2012, 97(3): 204-229.
[24]WEN H Y, YAO L, ZHU C J. Review on mathematical analysis of some two-phase flow models[J]. Acta Mathematica Scientia (Series B, English Edition), 2018, 38(5): 1617-1636.
[25]杨静. 关于混合流体力学中一些问题的研究[D]. 西安:西北大学,2015.
[26]杨静. 三维粘性液体-气体两相流模型真空问题的整体经典解存在性[D]. 西安:西北大学, 2012.
[27]YAO L, ZHANG T, ZHU C J. Existence and asymptotic behavior of global weak solutions to a 2d viscous liquid-gas two-phase flow model[J]. Siam Journal on Mathematical Analysis, 2010, 42(4): 1874-1897.
[28]YAO L, ZHU C J. Free boundary value problem for a viscous two-phase model with mass-dependent viscosity[J].Journal of Differential Equations, 2009, 247(10): 2705-2739.
[29]BRESCH D, DESJARDINS B, GHIDAGLIA J, et al. Global weak solutions to a generic two-fluid model[J]. Archive for Rational Mechanics and Analysis, 2010, 196(2): 599-629.
[30]CUI H B, WANG W J, YAO L, et al. Decay rates for a nonconservative compressible generic two-fluid model[J]. Siam Journal on Mathematical Analysis, 2016,48(1): 470-512.
[31]LI Y, WANG H Q, WU G C, et al. Global existence and decay rates for a generic compressible two-fluid model[EB/OL]. (2021-08-16)[2021-12-07]. https://arxiv.org/abs/2108.06974.
[32]WANG H Q, WANG J, WU G C, et al. Optimal decay rates of a non-conservative compressible two-phase fluid model[EB/OL]. (2020-10-22)[2021-12-07]. https://arxiv.org/abs/2010.11509v1.
[33]BRESCH D, HUANG X D, LI J. Global weak solutions to one-dimensional non-conservative viscous compressible two-phase system[J]. Communications in Mathematical Physics, 2012, 309(3): 737-755.
[1] WANG Han, ZHANG Yinghui. Optimal Time-decay Rates of the Hyperbolic-parabolic System Modeling Chemotaxis in R3 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 125-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1 -12 .
[2] ZHAO Dongjiang, MA Songyan, TIAN Xiqiang. Applications of CoSe2/C Catalyst in Electrocatalytic Oxygen Reduction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 30 -43 .
[3] WANG Han, ZHANG Yinghui. Optimal Time-decay Rates of the Hyperbolic-parabolic System Modeling Chemotaxis in R3[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 125 -131 .
[4] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[5] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[6] TIE Jun, LONG Juanjuan, ZHENG Lu, NIU Yue, SONG Yanlin. Tomato Leaf Disease Recognition Model Based on SK-EfficientNet[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 104 -114 .
[7] WENG Ye, SHAO Desheng, GAN Shu. Principal Component Liu Estimation Method of the Equation    Constrained Ⅲ-Conditioned Least Squares[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 115 -125 .
[8] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[9] HE Qing, LIU Jian, WEI Lianfu. Single-Photon Detectors as the Physical Limit Detections of Weak Electromagnetic Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 1 -23 .
[10] TIAN Ruiqian, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, JIANG Pinqun, CAI Chaobo. Research Progress of Successive Approximation Register Analog-to-Digital Converter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 24 -35 .