Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 138-149.doi: 10.16088/j.issn.1001-6600.2022012002
Previous Articles Next Articles
QIN Yongsong, LEI Qingzhu*
CLC Number:
[1]CLIFF A D, ORD J K. Spatial autocorrelation[M]. London: Pion Ltd, 1973. [2]ANSELIN L. Spatial econometrics: methods and models[M]. The Netherland: Kluwer Academic Publishers, 1988. [3]LEE L F. Asymptotic distributions of quasi-maximum likelihood estimators for spatial autore-gressive models[J]. Econometrica, 2004, 72: 1899-1925. [4]LIU X, LEE L F, BOLLINGER C R. An efficient GMM estimator of spatial autoregressive models[J]. Journal of Econometrics, 2010, 159: 303-319. [5]HAN X Y, LEE L F. Bayesian estimation and model selection for spatial Durbin error model with finite distributed lags[J]. Regional Science and Urban Economics, 2013, 43: 816-837. [6]LESAGE J, PACE R K. Introduction to spatial econometrics[M]. Boca Raton: CRC Press, 2009. [7]ELHORST J P. Spatial econometrics from cross-sectional data to spatial panels[M]. New York: Springer, 2014. [8]KAPOOR M, KELEJIAN H H, PRUCHA I R. Panel data models with spatially correlated error components[J]. Journal of Econometrics, 2007, 140: 97-130. [9]LEE L F, YU J. Estimation of spatial autoregressive panel data models with fixed effects[J]. Journal of Econometrics, 2010, 154: 165-185. [10]LEE L F, YU J. Some recent developments in spatial panel data models[J]. Regional Science and Urban Economics, 2010, 40: 255-271. [11]LEE L F, YU J. Spatial panel data models, In: BALTAGI B H (Eds), Oxford Handbook of Panel Data[M]. Oxford: Oxford University Press, 2015. [12]ANSELIN L. Spatial econometrics[M]// BALTAGI B H. A companion to theoretical econometrics. Massachusetts: Blackwell Publishers Ltd, 2001: 310-330. [13]ELHORST J P. Unconditional maximum likelihood estimation of linear and log-linear dynamic models for spatial panels[J]. Geographical Analysis, 2005, 37: 85-106. [14]ELHORST J P. Dynamic panels with endogenous interaction effects when T is small[J]. Regional Science and Urban Economics, 2010, 40: 272-282. [15]HSIAO C, PESARAN M H, TAHMISCIOGLU A K. Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods[J]. Journal of Econometrics, 2002, 109: 107-150. [16]BALTAGI B H, EGGER P, PFAFFERMAYR M. A generalized spatial panel model with random effects[J]. Econometric Reviews, 2013, 32: 650-685. [17]SU L J, YANG Z L. QML estimation of dynamic panel data models with spatial errors[J]. Journal of Econometrics, 2015, 185: 230-258. [18]QU X, LEE L F, YU J. QML estimation of spatial dynamic panel data models with endogenous time varying spatial weights matrices[J]. Journal of Econometrics, 2017, 197: 173-201. [19]YANG Z. Unified M-estimation of fixed-effects spatial dynamic models with short panels[J]. Journal of Econometrics, 2018, 205: 423-447. [20]MARTELLOSIO F, HILLIER G. Adjusted QMLE for the spatial autoregressive parameter[J]. Journal of Econometrics, 2020, 219: 488-506. [21]WANG H X, LIN J G, WANG J D. Nonparametric spatial regression with spatial autoregressive error structure[J]. Statistics, 2016, 50: 60-75. [22]MOZAROVSKY P, VOGLER J. Composite marginal likelihood estimation of spatial autore-gressive probit models feasible in very large samples[J]. Economics Letters, 2016, 148: 87-90. [23]王晓瑞. 空间自回归模型变量选择的理论研究和实证分析[D]. 北京:北京工业大学, 2018. [24]ZHU J, HUANG H C, REYES P E. On selection of spatial linear models for lattice data[J]. Journal of the Royal Statistical Society B, 2010, 72: 389-402. [25]WU Y, SUN Y. Shrinkage estimation of the linear model with spatial interaction[J]. Metrika, 2017, 80: 51-68. [26]戴晓文, 之振, 田茂再. 带固定效应面板数据空间误差模型的分位回归估计[J]. 应用数学学报, 2016, 39: 847-858. [27]李序颖. 基于空间自回归模型的缺失值插补方法[J]. 数理统计与管理, 2005, 24: 45-50. [28]MORAN P A P. Notes on continuous stochastic phenomena[J]. Biometrika, 1950, 37: 17-23 [29]ANSELIN L. Local indicators of spatial association-LISA[J]. Geographical Analysis, 1995, 27(2): 93-115. [30]YU J, JONG R D, LEE L F. Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large[J]. Journal of Econometrics, 2008, 146: 118-134. [31]SU L, ZHANG Y. Semiparametric estimation of partially linear dynamic panel data models with fixed effects[J]. Advances in Econometrics, 2016, 36: 137-204. [32]许永洪, 陈剑伟. 部分线性固定效应空问滞后面板模型的估计研究[J]. 统计研究, 2017, 34: 99-109. [33]LESAGE J P, PACE P K. A matrix exponential spatial specification[J]. Journal of Econometrics, 2017, 140: 190-214. [34]QIN Y S. Empirical likelihood for spatial autoregressive models with spatial autoregressive disturbances[J]. Sankhy A: The Indian Journal of Statistics, 2021, 83: 1-25. [35]QIN J, LAWLESS J. Empirical likelihood and general estimating equations[J]. The Annals of Statistics, 1994, 22: 300-325. [36]LI Y H, LI Y, QIN Y S. Empirical likelihood for panel data models with spatial errors[J]. Communications in Statistics-Theory and Methods, 2022, 51(9): 2838-2857. [37]THOMAS D R, GRUNKEMEIER G L. Confidence interval estimation of survival probabilits for censored data[J]. Journal of the American Statistical Association, 1975, 70: 865-871. [38]OWEN A B. Empirical likelihood ratio confidence intervals for a single functional[J]. Biometrika, 1988, 75: 237-249. [39]OWEN A B. Empirical likelihood ratio confidence regions[J]. The Annals of Statistics, 1990, 18: 90-120. [40]HALL P. The Bootstrap and edgeworth expansion[M]. New York: Springer-Verlag, 1992. [41]HALL P, LA SCALA B. Methodology and algorithms of empirical likelihood[J]. International Statistical Review, 1990, 58: 109-127. [42]OWEN A B. Empirical likelihood for linear models[J]. The Annals of Statistics, 1991, 19: 1725-1747. [43]KOLACZYK E D. Emprical likelihood for generalized linear models[J]. Statistica Sinica, 1994, 4: 199-218. [44]CHEN S X, QIN Y S. Empirical likelihood confidence intervals for local linear smoothers[J]. Biometrika, 2000, 87: 946-953. [45]QIN Y S. Empirical likelihood ratio confidence regions in a partly linear model[J]. Chinese Journal of Applied Probability and Statistics, 1999, 15: 363-369. [46]SHI J, LAU T S. Empirical likelihood for partially linear models[J]. Journal of Multivariate Analysis, 2000, 72: 132-148. [47]WANG Q, JING B Y. Empirical likelihood for partially linear models with fixed design[J]. Statistics & Probability Letters, 1999, 41: 425-433. [48]CUI H J, CHEN S X. Empirical likelihood confidence regions for parameter in the error-in-variable models[J]. Journal of Multivariate Analysis, 2003, 84: 101-115. [49]XUE L G, ZHU L X. Empirical likelihood for a varying coefficient model with longitudinal data[J]. Journal of the American Statistical Association, 2007, 102: 642-654. [50]XUE L G.Empirical likelihood confidence intervals for response mean with data missing at random[J]. Scandinavian Journal of Statistics, 2009, 36: 671-685. [51]TANG C Y, QIN Y S. An efficient empirical likelihood approach for estimating equations with missing data[J]. Biometrika, 2012, 99: 1001-1007. [52]CHEN S X, KEILEGOM I V. A review on empirical likelihood methods for regression[J]. Test, 2009, 18: 415-447. [53]NORDMAN D J. An empirical likelihood method for spatial regression[J]. Metrika, 2008, 68: 351-363. [54]NORDMAN D J, CARAGEA P C. Point and interval estimation of variogram models using spatial empirical likelihood[J]. Journal of the American Statistical Association, 2008, 103: 350-361. [55]BANDYOPADHYAY S, LAHIRI N, NORDMAN D J. A frequency domain empirical likelihood method for irregularly spaced spatial data [J]. The Annals of Statistics, 2015, 43: 519-545. [56]JIN F, LEE L F. GEL estimation and tests of spatial autoregressive models[J]. Journal of Econometrics, 2019, 208: 585-612. [57]QIN Y S, LEI Q Z. Empirical likelihood for mixed regressive, spatial autoregressive model based on GMM[J]. Sankhy A: The Indian Journal of Statistics, 2021, 83: 353-378. [58]QIN Y S. Empirical likelihood and GMM for spatial models[J]. Communications in Statistics-Theory and Methods, 2021, 50: 4367-4385. [59]LI Y H, QIN Y S, LI Y. Empirical likelihood for nonparametric regression models with spatial autoregressive errors[J]. Journal of the Korean Statistical Society, 2021, 50: 447-478. [60]RONG J R, LIU Y, QIN Y S. Empirical likelihood for spatial dynamic panel data model-s with spatial lags and spatial errors[J/OL]. Communications in Statistics-Theory and Methods[2022-03-01]. https://doi.org/10.1080/03610926.2022.2032172. [61]曾庆樊, 秦永松, 黎玉芳. 时变系数空间面板数据模型的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 30-42. |
[1] | ZHANG Junjian. Review on Nonparametric Likelihood and Their Applications [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 150-159. |
[2] | ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30-42. |
[3] | LIU Yu, ZHOU Wen, LI Ni. Semiparametric Rate Models for Recurrent Event Data with Cure Rate via Empirical Likelihood [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 139-149. |
[4] | ZHANG Junjian, LAI Tingyu, YANG Xiaowei. Bayesian Empirical Likelihood Estimation on VaR and ES [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 38-45. |
[5] | QIN Yong-song, YANG Cui-lian. Empirical Likelihood for Marginal Joint Probability Density Functions of a Negatively Associated Sample [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 22-29. |
|