Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 127-137.doi: 10.16088/j.issn.1001-6600.2021120703
Previous Articles Next Articles
ZHANG Yinghui*, YE Qin
CLC Number:
[1]ISHII M. Thermo-fluid dynamic theory of two-phase flow[M]. Paris: Eyrolles, 1975. [2]BEAR J. Dynamics of fluids in porous media[M]. Environmental Science Series, New York: Elsevier, 1972. [3]BAHOURI H, CHEMIN J, DANCHIN R. Fourier analysis and nonlinear partial differential equations[M].Grundlehren der Mathematischen Wissenschaften, Heidelberg: Springer, 2011. [4]GODLEWSKI E, RAVIART P A. Hyperbolic systems of conservation laws[M]. Paris: Ellipses, 1991. [5]KOLEV N, LYCZKOWSKI R. Multiphase flow dynamics: Vol. 1: Fundamentalsz[M]. Berlin: Springer, 2003. [6]NOVOTN M, POKORN A. Weak solutions for some compressible multicomponent fluid models[J]. Archive for Rational Mechanics and Analysis, 2020, 235(1): 355-403. [7]PROSPERETTI A, TRYGGVASON G. Computational methods for multiphase flow[M].Cambridge: Cambridge University Press, 2007. [8]YAO L, ZHU C J, GUO Z H. Blow-up criterion for 3d viscous liquid-gas two-phase flow model[J]. Journal of Mathematical Analysis and Applications, 2012, 395(1): 175-190. [9]EVJE S. Global weak solutions for a compressible gas-liquid model with well-formation interaction[J]. Journal of Differential Equations, 2011, 251(8): 2352-2386. [10]EVJE S. A compressible two-phase model with pressure-dependent well-reservoir interaction[J]. Siam Journal on Mathematical Analysis, 2013, 45(2): 518-546. [11]EVJE S. Genuine two-phase flow dynamics with a free interface separating gas-liquid mixture from gas[J]. Siam Journal on Mathematical Analysis, 2013, 45(5): 2894-2923. [12]EVJE S, FLATTEN T, FRIIS H. Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum[J].Nonlinear Analysis: Theory, Methods Applications, 2009, 11(11): 3864-3886. [13]EVJE S, KARLSEN K. Analysis of a compressible gas-liquid model by oil well control operations[J]. Acta Mathematica Scientia, 2012, 32(1):295-314. [14]EVJE S, KENNETH B, KARLSEN H. Global existence of weak solutions for a viscous two-phase model[J]. Journal of Differential Equations, 2008, 245(9): 2660-2703. [15]EVJE S, KARLSEN K. Global weak solutions for a viscous liquid-gas model with singular pressure law[J].Communications on Pure Applied Analysis, 2009, 8(6): 1867-1894. [16]EVJE S, LIU Q Q, ZHU C J. Asymptotic stability of the compressible gas-liquid model with well-formation interaction and gravity[J]. Journal of Differential Equations, 2014, 257(9): 3226-3271. [17]EVJE S, SOLEN S. Relaxation limit of a compressible gas-liquid model with well-reservoir interaction[J]. Zeitschrift für Angewandte Mathematik und Physik. ZAMP. Journal of Applied Mathematics and Physics. Journal de Mathématiques et de Physique Appliquées, 2017, 68(1): 23-25. [18]EVJE S, WANG W J, WEN H Y. Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model[J].Archive for Rational Mechanics Analysis, 2016, 221(3):1285-1316. [19]FRIIS H, EVJE S. Asymptotic behavior of a compressible two-phase model with well-formation interaction[J]. Journal of Differential Equations, 2013, 254(9): 3957-3993. [20]洪广益.可压缩Navier-Stokes方程组及相关模型解的最优衰减率研究[D]. 广州:华南理工大学, 2019. [21]WANG Y H, WEN H Y, YAO L. On a non-conservative compressible two-fluid model in a bounded domain: global existence and uniqueness[J].Journal of Mathematical Fluid Mechanics, 2021, 23(1): 4-24. [22]王盈辉. 三维非守恒可压缩两相流模型的时间周期解[D]. 西安:西北大学, 2018. [23]WEN H Y, YAO L, ZHU C J. A blow-up criterion of strong solution to a 3d viscous liquid-gas two-phase flow model with vacuum[J]. Journal de Mathématiques Pures et Appliquées, 2012, 97(3): 204-229. [24]WEN H Y, YAO L, ZHU C J. Review on mathematical analysis of some two-phase flow models[J]. Acta Mathematica Scientia (Series B, English Edition), 2018, 38(5): 1617-1636. [25]杨静. 关于混合流体力学中一些问题的研究[D]. 西安:西北大学,2015. [26]杨静. 三维粘性液体-气体两相流模型真空问题的整体经典解存在性[D]. 西安:西北大学, 2012. [27]YAO L, ZHANG T, ZHU C J. Existence and asymptotic behavior of global weak solutions to a 2d viscous liquid-gas two-phase flow model[J]. Siam Journal on Mathematical Analysis, 2010, 42(4): 1874-1897. [28]YAO L, ZHU C J. Free boundary value problem for a viscous two-phase model with mass-dependent viscosity[J].Journal of Differential Equations, 2009, 247(10): 2705-2739. [29]BRESCH D, DESJARDINS B, GHIDAGLIA J, et al. Global weak solutions to a generic two-fluid model[J]. Archive for Rational Mechanics and Analysis, 2010, 196(2): 599-629. [30]CUI H B, WANG W J, YAO L, et al. Decay rates for a nonconservative compressible generic two-fluid model[J]. Siam Journal on Mathematical Analysis, 2016,48(1): 470-512. [31]LI Y, WANG H Q, WU G C, et al. Global existence and decay rates for a generic compressible two-fluid model[EB/OL]. (2021-08-16)[2021-12-07]. https://arxiv.org/abs/2108.06974. [32]WANG H Q, WANG J, WU G C, et al. Optimal decay rates of a non-conservative compressible two-phase fluid model[EB/OL]. (2020-10-22)[2021-12-07]. https://arxiv.org/abs/2010.11509v1. [33]BRESCH D, HUANG X D, LI J. Global weak solutions to one-dimensional non-conservative viscous compressible two-phase system[J]. Communications in Mathematical Physics, 2012, 309(3): 737-755. |
[1] | WANG Han, ZHANG Yinghui. Optimal Time-decay Rates of the Hyperbolic-parabolic System Modeling Chemotaxis in R3 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 125-131. |
|