Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (2): 164-174.doi: 10.16088/j.issn.1001-6600.2025022503
• Mathematics and Statistics • Previous Articles Next Articles
LIU Shengqiang*, LIU Zehan, PIAN Xiaoyu
| [1] 崔景安, 吕金隆, 郭松柏, 等.新发传染病动力学模型:应用于2019新冠肺炎传播分析[J].应用数学学报, 2020, 43(2):147-155.DOI:10.1360/SSM-2020-0026. [2] RAI R K, TIWARI P K, KANG Y, et al.Modeling the effect of literacy and social media advertisements on the dynamics of infectious diseases[J].Mathematical Biosciences and Engineering, 2020, 17(5):5812-5848.DOI:10.3934/mbe.2020311. [3] NIU Z M, QIN Z, HU P W, et al.Health beliefs, trust in media sources, health literacy, and preventive behaviors among high-risk Chinese for COVID-19[J].Health Communication, 2022, 37(8):1004-1012.DOI:10.1080/10410236.2021.1880684. [4] LIU R S, WU J H, ZHU H P.Media/psychological impact on multiple outbreaks of emerging infectious diseases[J].Computational and Mathematical Methods in Medicine, 2007, 8(3):612372.DOI:10.1080/17486700701425870. [5] LIU Y P, CUI J A.The impact of media coverage on the dynamics of infectious disease[J].International Journal of Biomathematics, 2008, 1(1):65-74.DOI:10.1142/s1793524508000023. [6] LU X J, WANG S K, LIU S Q, et al.An SEI infection model incorporating media impact[J].Mathematical Biosciences and Engineering, 2017, 14(5/6):1317-1335.DOI:10.3934/mbe.2017068. [7] WANG N, QI L X, BESSANE M, et al.Global Hopf bifurcation of a two-delay epidemic model with media coverage and asymptomatic infection[J].Journal of Differential Equations, 2023, 369:1-40.DOI:10.1016/j.jde.2023.05.036. [8] XIE J L, GUO H L, ZHANG M Y.Dynamics of an SEIR model with media coverage mediated nonlinear infectious force[J].Mathematical Biosciences and Engineering, 2023, 20(8):14616-14633.DOI:10.3934/mbe.2023654. [9] SONG P F, XIAO Y N.Analysis of a diffusive epidemic system with spatial heterogeneity and lag effect of media impact[J].Journal of Mathematical Biology, 2022, 85(2):17.DOI:10.1007/s00285-022-01780-w. [10] LI T J, XIAO Y N.Complex dynamics of an epidemic model with saturated media coverage and recovery[J].Nonlinear Dynamics, 2022, 107(3):2995-3023.DOI:10.1007/s11071-021-07096-6. [11] BUONOMO B, DELLA MARCA R.Oscillations and hysteresis in an epidemic model with information-dependent imperfect vaccination[J].Mathematics and Computers in Simulation, 2019, 162:97-114.DOI:10.1016/j.matcom.2019.01.005. [12] 张真真, 李盈科, 赵睿轩.具有疫苗接种和年龄结构的疟疾传播模型的动力学行为[J].淮阴师范学院学报(自然科学版), 2024,23(4):288-296.DOI:10.16119/j.cnki.issn1671-6876.2024.04.012. [13] 韩梦洁, 刘俊利.具有不完全接种的反应扩散禽流感模型[J].山东大学学报(理学版), 2023,58(10):106-121. [14] MAHADHIKA C K, ALDILA D.A deterministic transmission model for analytics-driven optimization of COVID-19 post-pandemic vaccination and quarantine strategies[J].Mathematical Biosciences and Engineering, 2024, 21(4):4956-4988.DOI:10.3934/mbe.2024219. [15] BUGALIA S, TRIPATHI J P, WANG H.Mutations make pandemics worse or better:modeling SARS-CoV-2 variants and imperfect vaccination[J].Journal of Mathematical Biology, 2024, 88(4):45.DOI:10.1007/s00285-024-02068-x. [16] 王琪, 窦霁虹.一类考虑垂直传染、接种及人均病床数的SIVS传染病模型分析[J].西南师范大学学报(自然科学版), 2022, 47(10):26-36.DOI:10.13718/j.cnki.xsxb.2022.10.004. [17] SAHA P, BISWAS S K, ALI BISWAS M H, et al.An SEQAIHR model to study COVID-19 transmission and optimal control strategies in Hong Kong, 2022[J].Nonlinear Dynamics, 2023, 111(7):6873-6893.DOI:10.1007/s11071-022-08181-0. [18] LI Y, SAMREEN, ZADA L, et al.Assessing the impact of time-varying optimal vaccination and non-pharmaceutical interventions on the dynamics and control of COVID-19:a computational epidemic modeling approach[J].Mathematics, 2023, 11(20):4253.DOI:10.3390/math11204253. [19] 黄自然, 古月明.一类肝吸虫病动力学模型及后向分支分析[J].赣南师范大学学报, 2024,45(6):9-13.DOI:10.13698/j.cnki.cn36-1346/c.2024.06.002. [20] van den DRIESSCHE P, WATMOUGH J.Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J].Mathematical Biosciences, 2002, 180(1/2):29-48.DOI:10.1016/S0025-5564(02)00108-6. [21] CASTILLO-CHAVEZ C, SONG B J.Dynamical models of tuberculosis and their applications[J].Mathematical Biosciences and Engineering, 2004, 1(2):361-404.DOI:10.3934/mbe.2004.1.361. |
| [1] | ZHANG Wanjing, LIN Zhigui. Turing Instability of a Parasite-host Model on Growing Domains [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 132-139. |
| [2] | FENG Jinming,LI Zunxian. Stability Analysis of a Class of Epidemic Model with Diffusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 63-68. |
|