Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (2): 115-131.doi: 10.16088/j.issn.1001-6600.2025041802

• Intelligence Information Processing • Previous Articles     Next Articles

A Multi-step Water Quality Prediction Model Based on Improved PatchTST

LUO Yuan, ZHU Wenzhong*, WANG Wen, WU Yuhao   

  1. School of Computer Science and Engineering, Sichuan University of Science & Engineering, Yibin Sichuan 644000, China
  • Received:2025-04-18 Revised:2025-06-12 Published:2026-02-03

Abstract: Water pollution issues in China are becoming increasingly prominent, making improvements in the accuracy of water quality prediction models crucial for effective water resource management and ecological protection. This study addresses the challenges of complex nonlinear relationship modeling and computational efficiency in multi-step water quality time series prediction by proposing an improved PatchTST model. The model incorporates three key module optimizations: 1) a lightweight CMixer encoder replacing the traditional Transformer encoder, which efficiently extracts temporal features through one-dimensional convolution and residual connections while reducing computational burden; 2) an Adaptive Mid-Frequency Energy Optimizer (AMEO) that enhances mid-frequency spectral information, improving the model’s ability to detect periodic changes in water quality parameters; and 3) a CKAHead prediction module based on Chebyshev polynomials and the Kolmogorov-Arnold representation theorem, strengthening the modeling of complex nonlinear relationships. In dissolved oxygen prediction at the Shimenzi section, the improved model achieves an MSE reduction of 12.9% compared with PatchTST and 14.0% compared with iTransformer, while maintaining a balance between computational efficiency and resource consumption. Furthermore, in generalization tests across five different monitoring sections, the model reduces MSE by approximately 10% compared with the next-best model for 48-hour forecasting tasks. Experimental results demonstrate that the improved model effectively enhances the accuracy and computational efficiency of multi-step water quality prediction, offering reference value for environmental time series analysis and water quality prediction research.

Key words: water quality prediction, time series forecasting, PatchTST, deep learning, water quality monitoring

CLC Number:  X832; X52; TP391
[1] YAN X, XIA Y Q, TI C P, et al.Thirty years of experience in water pollution control in Taihu Lake:a review[J].Science of the Total Environment, 2024, 914:169821.DOI:10.1016/j.scitotenv.2023.169821.
[2] 程浩淼, 杨富康, 张健, 等.基于机器学习的河湖水质评估的研究进展[J].环境科学, 2025, 46(6):3349-3360.DOI:10.13227/j.hjkx.202406089.
[3] 国家环境保护总局,国家质量监督检验检疫总局.地表水环境质量标准:GB 3838—2002[S].北京:中国环境科学出版社, 2002.
[4] XU C, LUO P C, WU P, et al.Detection of periodicity, aperiodicity, and corresponding driving factors of river dissolved oxygen based on high-frequency measurements[J].Journal of Hydrology, 2022, 609:127711.DOI:10.1016/j.jhydrol.2022.127711.
[5] 许泽婷, 余香英, 徐闯, 等.广东省7大流域地表水溶解氧分布特征及影响因素[J].水生态学杂志, 2025, 46(2):52-61.DOI:10.15928/j.1674-3075.202404030110.
[6] ANMALA J, TURUGANTI V.Comparison of the performance of decision tree (DT) algorithms and extreme learning machine (ELM) model in the prediction of water quality of the Upper Green River watershed[J].Water Environment Research, 2021, 93(11):2360-2373.DOI:10.1002/wer.1642.
[7] LU H F, MA X.Hybrid decision tree-based machine learning models for short-term water quality prediction[J].Chemosphere, 2020, 249:126169.DOI:10.1016/j.chemosphere.2020.126169.
[8] LI L, RONG S M, WANG R, et al.Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment:a review[J].Chemical Engineering Journal, 2021, 405:126673.DOI:10.1016/j.cej.2020.126673.
[9] LIANG W Z, LIU T C, WANG Y T, et al.Spatiotemporal-aware machine learning approaches for dissolved oxygen prediction in coastal waters[J].Science of the Total Environment, 2023, 905:167138.DOI:10.1016/j.scitotenv.2023.167138.
[10] 张建奇, 冯乐源, 李东鹤, 等.采用堆叠长短期记忆神经网络的水质连续预测方法[J].西安交通大学学报, 2025, 59(6):93-102.DOI:10.7652/xjtuxb202506010.
[11] 张海霞, 李瑞, 王霞, 等.基于VMD和GA-BiLSTM组合模型的河流水质预测[J].环境工程技术学报, 2025, 15(4):1181-1188.
[12] LIN Y Z, QIAO J F, BI J, et al.Transformer-based water quality forecasting with dual patch and trend decomposition[J].IEEE Internet of Things Journal, 2025, 12(8):10987-10997.DOI:10.1109/JIOT.2024.3514133.
[13] HUANG X Y, TANG J, SHEN Y M.Long time series of ocean wave prediction based on PatchTST model[J].Ocean Engineering, 2024, 301:117572.DOI:10.1016/j.oceaneng.2024.117572.
[14] YU G, LI Y, WANG J, et al.ReFocus:reinforcing mid-frequency and key-frequency modeling for multivariate time series forecasting[EB/OL].(2025-03-03)[2025-06-10].https://arxiv.org/abs/2502.16890.
[15] DONG C, ZHENG L W, CHEN W T.Kolmogorov-arnold networks (KAN) for time series classification and robust analysis[C]//Advanced Data Mining and Applications.Cham:Springer, 2025:342-355.DOI:10.1007/978-981-96-0840-9_24.
[16] CORDES D, LATIFI S, MORRISON G M.Systematic literature review of the performance characteristics of Chebyshev polynomials in machine learning applications for economic forecasting in low-income communities in sub-Saharan Africa[J].SN Business & Economics, 2022, 2(12):184.DOI:10.1007/s43546-022-00328-w.
[17] BHATT S, MISHRA A P, CHANDRA N, et al.Characterizing seasonal, environmental and human-induced factors influencing the dynamics of Rispana River’s water quality:Implications for sustainable river management[J].Results in Engineering, 2024, 22:102007.DOI:10.1016/j.rineng.2024.102007.
[18] LIU Y, WU H, WANG J, et al.Non-stationary transformers:exploring the stationarity in time series forecasting[J].Advances in neural information processing systems, 2022, 35:9881-9893.
[19] 杨信廷, 郭向阳, 韩佳伟, 等.基于TiDE-PatchTST模型的柑橘冷藏效率时序预测模型优化[J].农业机械学报, 2024, 55(7):396-404.DOI:10.6041/j.issn.1000-1298.2024.07.039.
[20] 王舒雨, 李豪, 马刚, 等.基于TCN和DLinear的光伏发电功率多步预测模型[J].电力建设, 2025, 46(4):173-184.DOI:10.12204/j.issn.1000-7229.2025.04.015.
[21] ZOU Y J, CHEN Y B, XU Y J, et al.Short-term freeway traffic speed multistep prediction using an iTransformer model[J].Physica A:Statistical Mechanics and Its Applications, 2024, 655:130185.DOI:10.1016/j.physa.2024.130185.
[22] 刘智锋, 王继民.可解释机器学习在信息资源管理领域的应用研究综述[J].数据分析与知识发现, 2024, 8(1):16-29.
[1] TIAN Sheng, FENG Shuaitao, LI Jia. A Framework for Enhanced Vehicle Trajectory Extraction in Urban Road Scenes [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 31-51.
[2] LÜ Hui, SI Ke. Photovoltaic Panel Defect Detection Based on Improved RT-DETR [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 52-64.
[3] WANG Xuyang, LIANG Yuhang. Multi-scale Asymmetric Attention Transformer for Remote Sensing Image Dehazing [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 77-89.
[4] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13-28.
[5] WEI Zishu, CHEN Zhigang, WANG Yanxue, Hasitieer Madetihan. Lightweight Bearing Defect Detection Algorithm Based on SBSI-YOLO11 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 80-91.
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15-23.
[7] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83-96.
[8] SU Chunhai, XIA Haiying. Facial Expression Recognition Based on Noise-Resistant Dual Constraint Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 70-82.
[9] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89-100.
[10] HOU Haiyan, TAN Yumei, SONG Shuxiang, XIA Haiying. Head Pose-Robust Facial Expression Recognition [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 126-137.
[11] LU Jiahui, CHEN Qingfeng, WANG Wenguang, YU Qian, HE Naixu, HAN Zongzhao. Multi-scale Attention Learning for Abdomen Multi-organ Image Segmentation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 138-148.
[12] DU Shuaiwen, JIN Ting. A Deep Hybrid Recommendation Algorithm Based on User Behavior Characteristics [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 91-100.
[13] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108-120.
[14] XIAO Yuting, LÜ Xiaoqi, GU Yu, LIU Chuanqiang. Classification of Diabetic Retinopathy Based on Split Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 91-101.
[15] GAO Fei, GUO Xiaobin, YUAN Dongfang, CAO Fujun. Improved PINNs Method for Solving the Convective Dominant Diffusion Equation with Boundary Layer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 33-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[2] XU Xiuhong, ZHANG Jinyan, LU Yuling, LIANG Xiaoping, LIAO Guangfeng, LU Rumei. Research Progress of New C21 Steroids in Medicinal Plants of Asclepiadaceae(Ⅱ)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 1 -16 .
[3] WANG Xingyu, ZHENG Haonan, LIU Xiao, CUI Shilong, CAI Jinjun. Research Progress on Preparation of Chitosan-based Adsorbents andTheir Applications Towards Adsorptive Removal of Pollutants From Water[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 17 -30 .
[4] TIAN Sheng, FENG Shuaitao, LI Jia. A Framework for Enhanced Vehicle Trajectory Extraction in Urban Road Scenes[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 31 -51 .
[5] LÜ Hui, SI Ke. Photovoltaic Panel Defect Detection Based on Improved RT-DETR[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 52 -64 .
[6] SONG Guanwu, LI Jianjun. Semantic Segmentation of Remote Sensing Images Basedon Self-distillation Edge Refinement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 65 -76 .
[7] WANG Xuyang, LIANG Yuhang. Multi-scale Asymmetric Attention Transformer for Remote Sensing Image Dehazing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 77 -89 .
[8] ZHANG Shengwei, CAO Jie. Detection Algorithm of Tiny Defects on Steel Surface Based onFourier Convolution and Difference Perception[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 90 -102 .
[9] WANG Wei, LI Zhiwei, ZHANG Zhaoyang, ZHANG Hong, ZHOU Li, WANG Zhen, HUANG Fang, WANG Can. Carbon Emission Prediction of Substation Based on IFA-BP Neural Network Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 103 -114 .
[10] CHEN Silin, LIU Jiafei, ZHOU Hexin, WU Jingli, LI Gaoshi. Critical Node Identification in Complex Network Based on Multi-feature Gravity Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 132 -144 .