Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 143-155.doi: 10.16088/j.issn.1001-6600.2025031402

• Ecology and Environmental Science Research • Previous Articles     Next Articles

Effects of Different Calcium and Cadmium Stoichiometric Relationships on Physiology and Biochemistry in Capsicum annuum L.

YAN Qiuxiao1,2, WEI Fuxiao1,2, LIN Shaoxia1,2, JIANG Yangming1,2, DENG Tingfei1,2, WANG Daoping1,2*, HUANG Dongfu3   

  1. 1. Guizhou Natural Products Research Center, Guiyang Guizhou 550014, China;
    2. National Key Laboratory of Discovery and Utilisation of Efficacy Components of Traditional Chinese Medicine, Guizhou Medical University, Guiyang Guizhou 550014, China;
    3. Guizhou Provincial Chilli Research Institute, Guiyang Guizhou 550025, China
  • Received:2025-03-14 Revised:2025-05-13 Online:2026-01-05 Published:2026-01-26

Abstract: In order to explore the influence mechanism of different Ca/Cd ratios in soil on plant Cd absorption and accumulation and its physiological and biochemical characteristics in carbonate areas with high Ca and Cd background. In this study, the Cd accumulation characteristics, physiological and biochemical characteristics of Capsicum annuum L. (capsicum) were discussed based on different ratios of Ca/Cd in production substrates by using regional simulated pot experiments. The results showed that with the continuous growth of capsicum, the effects of different Ca/Cd treatments on the growth rate of capsicum were gradually obvious, and the photosynthesis, root activity and biomass were significantly improved. The increase of Ca/Cd ratio in the substrate promoted Cd accumulation in roots, reduced Cd transfer to stems and leaves, At the same time, it promoted the accumulation of Ca in leaves, increased the Ca/Cd ratio in leaves, promoted the antioxidant enzyme activity (SOD, POD, and CAT activities increased by 17%-69%, 16%-268%, and 9%-136%, respectively) and proline content of leaves, and the malondialdehyde and protein carbonyls were significantly reduced. In conclusion, Ca regulates Cd tolerance in capsicum by enhancing Cd fixation by roots, reducing the transfer process of Cd to aerial parts, and enhancing growth and development and stress resistance, and this detoxification mechanism is closely related to different Ca/Cd stoichiometry.

Key words: Ca/Cd ratios, Capsicum annuum L., Cd enrichment, physiological and biochemical response, detoxification mechanism

CLC Number:  S641.3
[1] 毛旭. 喀斯特地区碳酸盐岩溶蚀对水稻镉富集的影响研究[D]. 贵阳: 贵州大学, 2022.
[2] QIN Y L, ZHANG F G, XUE S D, et al. Heavy metal pollution and source contributions in agricultural soils developed from karst landform in the southwestern region of China[J]. Toxics, 2022, 10(10): 568. DOI: 10.3390/toxics10100568.
[3] 蔡大为, 李龙波, 蒋国才, 等. 贵州耕地主要元素地球化学背景值统计与分析[J]. 贵州地质, 2020, 37(3): 233-239. DOI: 10.3969/j.issn.1000-5943.2020.03.003.
[4] 骆永明, 滕应. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 2018, 33(2): 145-152. DOI: 10.16418/j.issn.1000-3045.2018.02.003.
[5] 曾庆庆. 辣椒种植区土壤重金属污染风险管控类别划分: 以贵州省BZ县为例[D]. 贵阳: 贵州大学, 2020.
[6] LI H, LUO N, LI Y W, et al. Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution, 2017, 224: 622-630. DOI: 10.1016/j.envpol.2017.01.087.
[7] ZHANG W E, PAN X J, ZHAO Q, et al. Plant growth, antioxidative enzyme, and cadmium tolerance responses to cadmium stress in Canna orchioides[J]. Horticultural Plant Journal, 2021, 7(3): 256-266. DOI: 10.1016/j.hpj.2021.03.003.
[8] SOLENKOVA N V, NEWMAN J D, BERGER J S, et al. Metal pollutants and cardiovascular disease: mechanisms and consequences of exposure[J]. American Heart Journal, 2014, 168(6): 812-822. DOI: 10.1016/j.ahj.2014.07.007.
[9] ARMITAGE I M, DRAKENBERG T, REILLY B. Use of (113) Cd NMR to probe the native metal binding sites in metalloproteins: an overview[J]. Metal Ions in Life Sciences, 2013, 11: 117-144. DOI: 10.1007/978-94-007-5179-8_6.
[10] XIN J L. Enhancing soil health to minimize cadmium accumulation in agro-products: the role of microorganisms, organic matter, and nutrients[J]. Environmental Pollution, 2024, 348: 123890. DOI: 10.1016/j.envpol.2024.123890.
[11] ZHANG X, XUE W J, ZHANG C B, et al. Cadmium pollution leads to selectivity loss of glutamate receptor channels for permeation of Ca2+/Mn2+/Fe2+/Zn2+ over Cd2+ in rice plant[J]. Journal of Hazardous Materials, 2023, 452: 131342. DOI: 10.1016/j.jhazmat.2023.131342.
[12] ELLER F, BRIX H. Influence of low calcium availability on cadmium uptake and translocation in a fast-growing shrub and a metal-accumulating herb[J]. AoB Plants, 2015, 8: plv143. DOI: 10.1093/aobpla/plv143.
[13] CHOONG G, LIU Y, TEMPLETON D M. Interplay of calcium and cadmium in mediating cadmium toxicity[J]. Chemico-Biological Interactions, 2014, 211: 54-65. DOI: 10.1016/j.cbi.2014.01.007.
[14] REN Q T, XU Z Y, XUE Y, et al. Mechanism of calcium signal response to cadmium stress in duckweed[J]. Plant Signaling & Behavior, 2022, 17(1): 2119340. DOI: 10.1080/15592324.2022.2119340.
[15] ZENG L H, ZHU T, GAO Y, et al. Effects of Ca addition on the uptake, translocation, and distribution of Cd in Arabidopsis thaliana[J]. Ecotoxicology and Environmental Safety, 2017, 139: 228-237. DOI: 10.1016/j.ecoenv.2017.01.023.
[16] SINGH U M, METWAL M, SINGH M, et al. Identification and characterization of calcium transporter gene family in finger millet in relation to grain calcium content[J]. Gene, 2015, 566(1): 37-46. DOI: 10.1016/j.gene.2015.04.021.
[17] PERFUS-BARBEOCH L, LEONHARDT N, VAVASSEUR A, et al. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status[J]. Plant Journal, 2002, 32(4): 539-548. DOI: 10.1046/j.1365-313x.2002.01442.x.
[18] RIVAS-UBACH A, SARDANS J, PÉREZ-TRUJILLO M, et al. Strong relationship between elemental stoichiometry and metabolome in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(11): 4181-4186. DOI: 10.1073/pnas.1116092109.
[19] JEYASINGH P D, GOOS J M, THOMPSON S K, et al. Ecological stoichiometry beyond redfield: an ionomic perspective on elemental homeostasis[J]. Frontiers in Microbiology, 2017, 8: 722. DOI: 10.3389/fmicb.2017.00722.
[20] HUANG D L, GONG X M, LIU Y G, et al. Effects of calcium at toxic concentrations of cadmium in plants[J]. Planta, 2017, 245(5): 863-873. DOI: 10.1007/s00425-017-2664-1.
[21] LÓPEZ-CLIMENT M F, ARBONA V, PÉREZ-CLEMENTE R M, et al. Effect of cadmium and calcium treatments on phytochelatin and glutathione levels in Citrus plants[J]. Plant Biology, 2014, 16(1): 79-87. DOI: 10.1111/plb.12006.
[22] FARZADFAR S, ZARINKAMAR F, MODARRES-SANAVY S A, et al. Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. plants[J]. Environmental Science and Pollution Research International, 2013, 20(3): 1413-1422. DOI: 10.1007/s11356-012-1181-9.
[23] XU D Y, ZHAO Y, ZHOU H D, et al. Effects of biochar amendment on relieving cadmium stress and reducing cadmium accumulation in pepper[J]. Environmental Science and Pollution Research, 2016, 23(12): 12323-12331. DOI: 10.1007/s11356-016-6264-6.
[24] HUANG Y Y, HUANG B F, SHEN C, et al. Boron supplying alters cadmium retention in root cell walls and glutathione content in Capsicum annuum[J]. Journal of Hazardous Materials, 2022, 432: 128713. DOI: 10.1016/j.jhazmat.2022.128713.
[25] 邵晓庆, 贺章咪, 徐卫红. 辣椒果实高中低镉积型对镉的富集、转运特性及在亚细胞分布特点比较[J]. 环境科学, 2021, 42(2): 952-959. DOI: 10.13227/j.hjkx.202007003.
[26] 张树珍, 樊卫国. 喀斯特地区野生毛葡萄的钙组分特征及其对高钙环境的适应性分析[J]. 西北植物学报, 2022, 42(10): 1728-1738. DOI: 10.7606/j.issn.1000-4025.2022.10.1728.
[27] 章明奎, 姚玉才, 邱志腾, 等. 中国南方碳酸盐岩发育土壤的成土特点与系统分类[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 54-65. DOI: 10.3785/j.issn.1008-9209.2018.03.281.
[28] YAN Q X, LIN S X, WEI F X, et al. Different stoichiometric ratios of Ca and Cd affect the Cd tolerance of Capsicum annuum L. by regulating the subcellular distribution and chemical forms of Cd[J]. Ecotoxicology and Environmental Safety, 2024, 285: 117089. DOI: 10.1016/j.ecoenv.2024.117089.
[29] 魏福晓, 颜秋晓, 王道平, 等. 辣椒幼苗对镉胁迫的生理生化响应[J]. 云南农业大学学报(自然科学), 2024, 39(6): 121-132. DOI: 10.12101/j.issn.1004-390X(n).202401026.
[30] XIAO X F, CHEN J Z, LIAO X F, et al. Different arbuscular mycorrhizal fungi established by two inoculation methods improve growth and drought resistance of Cinnamomum migao seedlings differently[J]. Biology, 2022, 11(2): 220. DOI: 10.3390/biology11020220.
[31] YAN Q X, LI X Y, XIAO X F, et al. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Cinnamomum migao by enhancing physio-biochemical responses[J]. Ecology and Evolution, 2022, 12(7): e9091. DOI: 10.1002/ece3.9091.
[32] LUX A, MARTINKA M, VACULÍK M, et al. Root responses to cadmium in the rhizosphere: a review[J]. Journal of Experimental Botany, 2011, 62(1): 21-37. DOI: 10.1093/jxb/erq281.
[33] DONG X X, YANG F, YANG S P, et al. Subcellular distribution and tolerance of cadmium in Canna indica L.[J]. Ecotoxicology and Environmental Safety, 2019, 185: 109692. DOI: 10.1016/j.ecoenv.2019.109692.
[34] FU X P, DOU C M, CHEN Y X, et al. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L.[J]. Journal of Hazardous Materials, 2011, 186(1): 103-107. DOI: 10.1016/j.jhazmat.2010.10.122.
[35] KÖSTER P, DEFALCO T A, ZIPFEL C. Ca2+ signals in plant immunity[J]. EMBO Journal, 2022, 41(12): e110741. DOI: 10.15252/embj.2022110741.
[36] CLEMENS S. Safer food through plant science: reducing toxic element accumulation in crops[J]. Journal of Experimental Botany, 2019, 70(20): 5537-5557. DOI: 10.1093/jxb/erz366.
[37] 韩畅, 蒋琪, 覃成, 等. 镉胁迫对辣椒幼苗生长与生理特性的影响[J]. 山东农业大学学报(自然科学版), 2020, 51(5): 810-813. DOI: 10.3969/j.issn.1000-2324.2020.05.005.
[38] HAIDER F U, CAI L Q, COULTER J A, et al. Cadmium toxicity in plants: impacts and remediation strategies[J]. Ecotoxicology and Environmental Safety, 2021, 211: 111887. DOI: 10.1016/j.ecoenv.2020.111887.
[39] LUO Q H, CHENG D J, HUANG C, et al. Improvement of colonic immune function with soy isoflavones in high-fat diet-induced obese rats[J]. Molecules, 2019, 24(6): 1139. DOI: 10.3390/molecules24061139.
[40] CHEN H B, TANG X J, WANG T J, et al. Calcium polypeptide mitigates Cd toxicity in rice via reducing oxidative stress and regulating pectin modification[J]. Plant Cell Reports, 2024, 43(7): 163. DOI: 10.1007/s00299-024-03253-4.
[41] CHO S C, CHAO Y Y, KAO C H. Calcium deficiency increases Cd toxicity and Ca is required for heat-shock induced Cd tolerance in rice seedlings[J]. Journal of Plant Physiology, 2012, 169(9): 892-898. DOI: 10.1016/j.jplph.2012.02.005.
[42] HU Y Y, LIU C H, WANG R P, et al. Protective actions of salvianolic acid A on hepatocyte injured by peroxidation in vitro[J]. World Journal of Gastroenterology, 2000, 6(3): 402-404. DOI: 10.3748/wjg.v6.i3.402.
[43] SOUSA N A, OLIVEIRA G A L, DE OLIVEIRA A P, et al. Novel ocellatin peptides mitigate LPS-induced ROS formation and NF-kB activation in microglia and hippocampal neurons[J]. Scientific Reports, 2020, 10(1): 2696. DOI: 10.1038/s41598-020-59665-1.
[44] HU L X, ZHANG Z F, XIANG Z X, et al. Exogenous application of citric acid ameliorates the adverse effect of heat stress in tall fescue (Lolium arundinaceum)[J]. Frontiers in Plant Science, 2016, 7: 179. DOI: 10.3389/fpls.2016.00179.
[45] ASHRAF M, FOOLAD M R. Roles of Glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany, 2007, 59(2): 206-216. DOI: 10.1016/j.envexpbot.2005.12.006.
[46] DUAN S N, LIU B H, ZHANG Y Y, et al. Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L.[J]. BMC Genomics, 2019, 20(1): 257. DOI: 10.1186/s12864-019-5617-1.
[47] LIU H, WANG Q Y, WANG J L, et al. Key factors for differential drought tolerance in two contrasting wild materials of Artemisia wellbyi identified using comparative transcriptomics[J]. BMC Plant Biology, 2022, 22(1): 445. DOI: 10.1186/s12870-022-03830-3.
[48] CAMEJO D, DEL C MARTÍ M, NICOLÁS E, et al. Response of superoxide dismutase isoenzymes in tomato plants (Lycopersicon esculentum) during thermo-acclimation of the photosynthetic apparatus[J]. Physiologia Plantarum, 2007, 131(3): 367-377. DOI: 10.1111/j.1399-3054.2007.00953.x.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[6] HUANG Yanguo, XIAO Jie, WU Shuiqing. Bidirectional Efficient Multi-scale Traffic Flow Prediction Based on D2STGNN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 10 -22 .
[7] LIU Zhihao, LI Zili, SU Min. YOLOv8-based Helmet Detection Method for Electric Vehicle Riders Combining Intelligent Communication and UAV-Assistance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 23 -32 .
[8] ZHANG Zhulu, LI Huaqiang, LIU Yang, XU Lixiong. Non-intrusive Load Identification Based on Bi-LSTM Feature Fusion and FT-FSL[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 33 -44 .
[9] WANG Tao, LI Yuansong, SHI Rui, CHEN Huining, HOU Xianqing. MGDE-UNet: Defect Segmentation Model for Lightweight Photovoltaic Cells[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 45 -55 .
[10] HUANG Wenjie, LUO Weiping, CHEN Zhennan, PENG Zhixiang, DING Zihao. Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 56 -67 .