Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 126-142.doi: 10.16088/j.issn.1001-6600.2025010203

• Ecology and Environmental Science Research • Previous Articles     Next Articles

Physiological Responses of 20 Cassava Germplasm at Different Growth Stages to Bacterial Blight Disease

CHEN Jiongyu1,2, ZHAO Xinxin1,2†, CHEN Ruirui1,2, FU Haitian1,2, PAN Huan1,2, ZHENG Hua1,2, ZHOU Shiyi1,2, ZENG Xinhua1,2, LUO Yanchun1,2*   

  1. 1. Guangxi Subtropical Crops Research Institute, Nanning Guangxi 530001, China;
    2. Guangxi Institute of Cassava, Nanning Guangxi 530001, China
  • Received:2025-01-02 Revised:2025-04-14 Online:2026-01-05 Published:2026-01-26

Abstract: In order to further explore the physiological mechanism of cassava resistance to bacterial wilt disease, 20 cassava germplasm with different resistance abilities were selected as the research objects, and cultured at Seedling stage (1.5M) and the grown up stage (3.5M) after planting, and the resistance evaluation was carried out 16 days later. The activities of phenylalanine ammoniase (PAL), superoxide dismutase (SOD), polyphenol oxidase (PPO), catalase (CAT), peroxidase (POD), malondialdehyde (MDA) and soluble sugar in cassava leaflets were determined. The contents of sugar, soluble protein (sPRO), proline (proline) were analyzed, and the relationship between the activity of defense-related enzymes and the content of contents and the infection process of bacterial wilt disease and the disease resistance of varieties were analyzed. The results showed that PAL, PPO, POD activities and MDA, soluble sugar, soluble protein and proline contents increased first and then decreased, and there were significant differences between them and healthy leaflets under 3.5M treatment. SOD and CAT activities were opposite. The proportion of lobular lesions was significantly negatively correlated with SOD and CAT, and positively correlated with other indexes. The defense enzyme activity and contents of resistant varieties were generally higher than those of susceptible varieties. The activities of SOD, POD, PPO, soluble sugar and proline in SC124 tetraploid were higher than those in SC124, and the activities of PAL, CAT and PPO in SC205 tetraploid were higher than those in SC205. The results indicated that PAL, PPO, POD, SOD, CAT activities and MDA, soluble sugar, soluble protein and proline contents were involved in the disease resistance control process of cassava bacterial blight.

Key words: Cassava, germ plasm, bacterial blight, defense enzyme activity, internal substances, physiological response

CLC Number:  S435.33
[1] LYONS J B, BREDESON J V, MANSFELD B N, et al. Current status and impending progress for cassava structural genomics[J]. Plant Molecular Biology, 2022, 109(3): 177-191. DOI: 10.1007/s11103-020-01104-w.
[2] ZHOU Y G, LAI Y, ZHAO H, et al. Research progress on resources and utilization of forest grains and oils[J]. China Forest Products Industry, 2024, 61(11): 86. DOI: 10.19531/j.issn1001-5299.202411015.
[3] 王惠君, 王文泉, 李文彬, 等. 木薯的抗寒性及北移栽培技术研究进展综述[J]. 热带作物学报, 2016, 37(7): 1437-1443. DOI: 10.3969/j.issn.1000-2561.2016.07.031.
[4] 李军. 加强木薯食用化和能源化多元开发 重振广西木薯产业[J]. 农业研究与应用, 2018, 31(1): 1-4.
[5] LOZANO J C. Cassava bacterial blight: a manageable disease[J]. Plant Disease, 1986, 70(12): 1089. DOI: 10.1094/pd-70-1089.
[6] YAN Y, WANG P, WEI Y X, et al. The dual interplay of RAV5 in activating nitrate reductases and repressing catalase activity to improve disease resistance in cassava[J]. Plant Biotechnology Journal, 2021, 19(4): 785-800. DOI: 10.1111/pbi.13505.
[7] WYDRA K, VERDIER V. Occurrence of cassava diseases in relation to environmental, agronomic and plant characteristics[J]. Agriculture, Ecosystems & Environment, 2002, 93(1/2/3): 211-226. DOI: 10.1016/S0167-8809(01)00349-8.
[8] 李超萍, 时涛, 刘先宝, 等. 国内木薯病害普查及细菌性萎蔫病安全性评估[J]. 热带作物学报, 2011, 32(1): 116-121. DOI: 10.3969/j.issn.1000-2561.2011.01.024.
[9] 李伯凌, 霍本君, 朱寿松, 等. 木薯叶片组织结构及生理生化特征与其抗细菌性枯萎病的关系[J]. 热带生物学报, 2017, 8(3): 292-300. DOI: 10.15886/j.cnki.rdswxb.2017.03.007.
[10] 吴美艳, 罗兴录, 樊铸硼, 等. 木薯抗细菌性枯萎病生理特性研究[J]. 南方农业学报, 2020, 51(6): 1353-1359. DOI: 10.3969/j.issn.2095-1191.2020.06.015.
[11] 林兆威, 李超萍, 蔡吉苗, 等. 3份木薯新种质抗细菌性萎蔫病机理初探[J]. 热带作物学报, 2021, 42(1): 205-212. DOI: 10.3969/j.issn.1000-2561.2021.01.028.
[12] DOS SANTOS TEIXEIRA J H, GUIMARÃES M A S, CARDOSO S C, et al. Evaluation of resistance to bacterial blight in Brazilian cassava germoplasm and disease-yield relationships[J]. Tropical Plant Pathology, 2021, 46(3): 324-335. DOI: 10.1007/s40858-021-00419-3.
[13] AQUILES K R, MARQUES E, MALAQUIAS J V, et al. Reaction of sweet cassava genotypes to Xanthomonas phaseoli pv. manihotis from three regions of Brazil[J]. Journal of Agricultural Science, 2021, 13(4): 64. DOI: 10.5539/JAS.V13N4P64.
[14] 卢昕, 李超萍, 时涛, 等. 国内603份木薯种质对细菌性枯萎病抗性评价[J]. 热带农业科学, 2013, 33(4): 67-70, 90. DOI: 10.3969/j.issn.1009-2196.2013.04.014.
[15] 岑贞陆, 黄思良, 任建国, 等. 木薯品种(组合)抗细菌性枯萎病性鉴定初报[J]. 广西农业生物科学, 2006(2): 134-135, 139.
[16] 王宝强, 马文静, 王贤, 等. 一氧化氮对干旱胁迫下紫花苜蓿幼苗次生代谢产物的影响[J]. 草业学报, 2023, 32(8): 141-151. DOI: 10.11686/cyxb2022252.
[17] 黄小贞, 赵德刚. 植物苯丙氨酸解氨酶表达调控机理的研究进展[J]. 贵州农业科学, 2017, 45(4): 16-20. DOI: 10.3969/j.issn.1001-3601.2017.04.005.
[18] 张乐乐, 常璐璐, 王小佳, 等.褪黑素诱导采后冬枣抗黑斑病的研究[J]. 保鲜与加工, 2021, 21(12): 1-9. DOI: 10.3969/j.issn.1009-6221.2021.12.001.
[19] 曾乙, 张胜, 宋海凤. 胡杨对叶锈菌侵染的生理响应[J]. 植物生理学报, 2023, 59(2): 353-361. DOI: 10.13592/j.cnki.ppj.100320.
[20] 甘林, 兰成忠, 阮妙鸿, 等. 抗感玉米自交系对小斑病菌早期侵染反应的转录组分析[J]. 农业生物技术学报, 2023, 31(3): 460-474. DOI: 10.3969/j.issn.1674-7968.2023.03.002.
[21] 耿莉娜, 龙艳玲, 徐宸, 等. 感染赤星病后不同烟草品种叶片防御酶的变化[J]. 西南大学学报(自然科学版), 2018, 40(10): 19-24. DOI: 10.13718/j.cnki.xdzk.2018.10.003.
[22] 孙伟娜, 柯希望, 左豫虎, 等. 不同小豆抗性品种对锈菌侵染的生化响应和防卫反应基因的表达特征[J]. 植物保护学报, 2022, 49(3): 864-870. DOI: 10.13802/j.cnki.zwbhxb.2022.2020219.
[23] 周亚洁, 陈朋, 周鑫惠, 等. 不同品种小麦种子萌发及幼苗发育对外源过氧化氢处理的响应[J]. 湖北农业科学, 2022, 61(16): 5-11, 17. DOI: 10.14088/j.cnki.issn0439-8114.2022.16.001.
[24] 程守丰, 梁巧兰, 魏列新, 等.苜蓿不同品种AMV和WCMV带毒检测及生理生化特性研究[J]. 草业学报, 2020, 29(12): 140-149. DOI: 10.11686/cyxb2020030.
[25] 卓梦霞, 刘思文, 李春雨, 等. 镰刀菌属真菌毒素在植物和病原菌互作中的研究进展[J]. 广东农业科学, 2024, 51(3): 56-69. DOI: 10.16768/j.issn.1004-874X.2024.03.006.
[26] 唐永萍, 石亚莉, 贺军花, 等. 不同灰霉病抗性苹果果实中酚类物质代谢特征[J]. 西北植物学报, 2017, 37(3): 510-516. DOI: 10.7606/j.issn.1000-4025.2017.03.0510.
[27] 李丽, 何雪梅, 李昌宝, 等. 炭疽病菌侵染对香蕉采后品质变化及抗病相关酶活性的影响[J]. 现代食品科技, 2017, 33 (9): 83-90. DOI: 10.13982/j.mfst.1673-9078.2017.9.012.
[28] MONTALBINI P, BUONAURIO R. Effect of tobacco mosaic virus infection of levels of soluble superoxide dismutase (SOD) in Nicotiana tabacum and Nicotiana glutinosa leaves[J]. Plant Science, 1986, 47(2): 135-143. DOI: 10.1016/0168-9452(86)90060-9.
[29] ORACZ K, EL-MAAROUF-BOUTEAU H, KRANNER I, et al. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination[J]. Plant Physiology, 2009, 150(1): 494-505. DOI: 10.1104/pp.109.138107.
[30] 张林林, 沈虎生, 杨冰, 等. 生防细菌HK11-9对黄瓜棒孢叶斑病的防病能力及其鉴定[J]. 生物技术通报, 2023,39(12): 209-218. DOI: 10.13560/j.cnki.biotech.bull.1985.2023-0407.
[31] 张雅君, 马姜明, 苏静, 等. 喀斯特石山克隆生长红背山麻杆的生理响应及耐受性评价[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 151-158. DOI: 10.16088/j.issn.1001-6600.2018.04.019.
[32] 姜淑祯, 宋文静, 杨波, 等. 不同烤烟品种对青枯病胁迫的生理响应及抗性分析[J]. 中国烟草科学, 2022, 43(6): 25-30. DOI: 10.13496/j.issn.1007-5119.2022.06.004.
[33] XU E K, FAN G Q, NIU S Y, et al. Transcriptome-wide profiling and expression analysis of diploid and autotetraploid Paulownia tomentosa × Paulownia fortunei under drought stress[J]. PLoS One, 2014, 9(11): e113313. DOI: 10.1371/journal.pone.0113313.
[34] 钱玥, 李思源, 饶良懿. 盐碱胁迫对菊芋渗透调节及抗氧化酶系统的影响[J]. 干旱区研究, 2023, 40(9): 1465-1471. DOI: 10.13866/j.azr.2023.09.10.
[35] 高建有, 匡美美, 罗庆, 等. 不同猕猴桃品种溃疡病抗性及其与枝条含糖量的关系[J]. 吉首大学学报(自然科学版), 2023, 44(3): 66-72. DOI: 10.13438/j.cnki.jdzk.2023.03.010.
[36] 王佳星, 余国源, 谢瑛, 等. 土壤镉胁迫对紫金牛生理特性的影响[J]. 东北林业大学学报, 2019, 47(5): 25-29. DOI: 10.13759/j.cnki.dlxb.2019.05.006.
[37] 孙胜男, 刘凡, 曾令益, 等. 萝卜根肿病抗感品种间侵染过程及生理生化差异分析[J]. 中国油料作物学报, 2022, 44(3): 642-651. DOI: 10.19802/j.issn.1007-9084.2021094.
[38] 于雄胜, 江振岳, 张文英, 等. 谷子萌发及苗期生理生化指标对铅胁迫的响应[J]. 南方农业学报, 2022, 53(3): 795-802. DOI: 10.3969/j.issn.2095-1191.2022.03.021.
[39] PASTUSZAK J, SZCZERBA A, DZIURKA M, et al. Physiological and biochemical response to Fusarium culmorum infection in three durum wheat genotypes at seedling and full anthesis stage[J]. International Journal of Molecular Sciences, 2021, 22(14): 7433. DOI: 10.3390/ijms22147433.
[40] 苏贺楠, 秦六月, 杨双娟, 等. 大白菜根肿病抗感品种间的侵染过程及生理生化差异分析[J]. 中国瓜菜, 2024, 37(6): 45-51. DOI: 10.16861/j.cnki.zggc.202423.0756.
[41] 于文波, 邢艺凡, 王雨, 等. 高粱对北方炭疽病的生理响应及应对措施[C]//中国作物学会. 第二十届中国作物学会学术年会论文摘要集. 沈阳:沈阳农业大学, 2023: 1. DOI: 10.26914/c.cnkihy.2023.082675.
[42] 马丹丹. 甘蓝类蔬菜根肿病抗性鉴定及相关生理生化的研究[D]. 石河子: 石河子大学, 2015.
[43] 张雅晰, 孙建苗, 王逍冬, 等. 7个匍匐翦股颖抗褐斑病的初步比较及生理响应[J]. 河北农业大学学报, 2024, 47(1): 58-65, 90. DOI: 10.13320/j.cnki.jauh.2024.0007.
[44] 王昶, 杨发荣, 李敏权, 等. 藜麦种质资源对霜霉病的抗性鉴定与评价[J]. 草地学报, 2022, 30(10): 2626-2634. DOI: 10.11733/j.issn.1007-0435.2022.10.012.
[45] 薛浩, 张锋, 张志宏, 等. “寒富”苹果与其同源四倍体耐盐差异研究[J]. 园艺学报, 2015, 42(5): 826-832. DOI: 10.16420/j.issn.0513-353x.2014-1042.
[46] 王雅美, 张蜀宁, 郑于莉, 等. 二、四倍体不结球白菜抗寒基因表达及生理生长特性[J]. 南京农业大学学报, 2014, 37(5): 41-46.
[47] 岳敏, 杨树国, 陈敬, 等. 半枝莲多倍体抗性生理指标研究[J]. 现代园艺, 2020, 43(19): 16-18. DOI: 10.14051/j.cnki.xdyy.2020.19.008.
[1] HUANG Xianwen, PENG Xiaohui, PENG Xiaoxue, GAN Li, LI Guilong, LIAO Qianting, SHEN Zhangyou, HUANG Yulan, WEI Maogui. Effect of Fenlong Tillage on Soil Fungal Community Diversity During Tuberous Root Formation Period of Cassava [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 172-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[6] HUANG Yanguo, XIAO Jie, WU Shuiqing. Bidirectional Efficient Multi-scale Traffic Flow Prediction Based on D2STGNN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 10 -22 .
[7] LIU Zhihao, LI Zili, SU Min. YOLOv8-based Helmet Detection Method for Electric Vehicle Riders Combining Intelligent Communication and UAV-Assistance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 23 -32 .
[8] ZHANG Zhulu, LI Huaqiang, LIU Yang, XU Lixiong. Non-intrusive Load Identification Based on Bi-LSTM Feature Fusion and FT-FSL[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 33 -44 .
[9] WANG Tao, LI Yuansong, SHI Rui, CHEN Huining, HOU Xianqing. MGDE-UNet: Defect Segmentation Model for Lightweight Photovoltaic Cells[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 45 -55 .
[10] HUANG Wenjie, LUO Weiping, CHEN Zhennan, PENG Zhixiang, DING Zihao. Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 56 -67 .