Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 119-125.doi: 10.16088/j.issn.1001-6600.2024120203
• Mathematics and Statistics • Previous Articles Next Articles
LI Yuge, REN Yonghua*, HAO Huiqin
| [1] CHOE H J, KIM H. Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids[J]. Communications in Partial Differential Equations, 2003, 28(5/6): 1183-1201. DOI: 10.1081/pde-120021191. [2] GAO J C, TAO Q, YAO Z G. A blowup criterion for the compressible nematic liquid crystal flows in dimension two[J]. Journal of Mathematical Analysis and Applications, 2014, 415(1): 33-52. DOI: 10.1016/j.jmaa.2014.01.039. [3] HUANG X D, XIN Z P. A blow-up criterion for the compressible Navier-Stokes equations[EB/OL]. (2009-02-16)[2024-12-02]. https://arxiv.org/abs/0902.2606v1. [4] HUANG X D, LI J, XIN Z P. Serrin-type criterion for the three-dimensional viscous compressible flows[J]. SIAM Journal on Mathematical Analysis, 2011, 43(4): 1872-1886. DOI: 10.1137/100814639. [5] KIM H. A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations[J]. SIAM Journal on Mathematical Analysis, 2006, 37(5): 1417-1434. DOI: 10.1137/s0036141004442197. [6] CHO Y, KIM H. Unique solvability for the density-dependent Navier-Stokes equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2004, 59(4): 465-489. DOI: 10.1016/j.na.2004.07.020. [7] 王金城, 齐进, 吴锤结. 不可压缩Navier-Stokes方程最优动力系统建模和分析[J]. 应用数学和力学, 2020, 41(1): 1-15. [7] 王金城, 齐进, 吴锤结. 含压力基Navier-Stokes方程最优动力系统建模和分析[J]. 应用数学和力学, 2020, 41(8):817-833. [8] 李志, 赵文强. 随机反应扩散方程的随机吸引子的高阶稳定性[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 151-158. DOI: 10.16088/j.issn.1001-6600.2023061202. [9] GUO Z G, O C J. Remarks on the possible blow-up conditions via one velocity component for the 3D Navier-Stokes equations[J]. The Journal of Geometric Analysis, 2024, 34(6): 170. DOI: 10.1007/s12220-024-01613-w. [10] 王兆伟, 王旦霞. 变密度MHD方程完全解耦且无条件能量稳定的数值算法[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 193-206. DOI: 10.16088/j.issn.1001-6600.2024031701. [11] 翟翠丽. 非齐次不可压Navier-Stokes和MHD方程的整体适定性研究[D]. 杭州: 浙江大学, 2017. [12] OKITA M. On the blow-up criterion for the Navier-Stokes equations with critical time order[J]. Journal of Differential Equations, 2023, 349: 269-283. DOI: 10.1016/j.jde.2022.12.040. [13] 何港晶, 孙小春, 吴育联. 分数阶不可压缩Navier-Stokes方程解的爆破性准则[J]. 云南大学学报(自然科学版), 2024, 46(4): 610-617. DOI: 10.7540/j.ynu.20220230. [14] 苏士懿. 不可压MHD方程组中的全局正则性的一些探索[J]. 应用数学进展, 2024, 13(2): 599-605. DOI: 10.12677/AAM.2024.132058. [15] SUN Y Z, WANG C, ZHANG Z F. A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations[J]. Journal deMathématiques Pures et Appliquées, 2011, 95(1): 36-47. DOI: 10.1016/j.matpur.2010.08.001. [16] HUANG X D, WANG Y. Global strong solution to the 2D nonhomogeneous incompressible MHD system[J]. Journal of Differential Equations, 2013, 254(2): 511-527. DOI: 10.1016/j.jde.2012.08.029. |
| [1] | SHE Lianbing, GAO Yunlong. Backward-compact Dynamics for Non-autonomous Navier-Stokes Equations on Unbounded Domains [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 41-46. |
|