Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 119-125.doi: 10.16088/j.issn.1001-6600.2024120203

• Mathematics and Statistics • Previous Articles     Next Articles

Blow-up Criterion for Navier-Stokes Equations of Nonhomogeneous Incompressible Fluids

LI Yuge, REN Yonghua*, HAO Huiqin   

  1. School of Mathematics, Taiyuan University of Technology, Jinzhong Shanxi 030600, China
  • Received:2024-12-02 Revised:2025-03-09 Online:2026-01-05 Published:2026-01-26

Abstract: This paper investigates the blow-up criteria for the Navier-Stokes equations of inhomogeneous incompressible fluids. While the existence of weak solutions to these equations has been extensively studied, the existence of strong solutions remains an open question, particularly for highly regular data that meet specific compatibility conditions, where only local existence results are currently available. The focus of this study is on the blow-up criteria within a two-dimensional bounded smooth domain, which refers to the conditions that cause solutions to lose regularity. By deriving priori estimates independent of the density lower bounds and establishing the existence and uniqueness of local strong solutions to the initial value problem or the initial boundary value problem, this paper offers new theoretical insights into the stability and existence of solutions in the dynamics of inhomogeneous incompressible fluids.

Key words: nonhomogeneous, incompressible fluids, Navier-Stokes equation, blowup criterion

CLC Number:  O29
[1] CHOE H J, KIM H. Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids[J]. Communications in Partial Differential Equations, 2003, 28(5/6): 1183-1201. DOI: 10.1081/pde-120021191.
[2] GAO J C, TAO Q, YAO Z G. A blowup criterion for the compressible nematic liquid crystal flows in dimension two[J]. Journal of Mathematical Analysis and Applications, 2014, 415(1): 33-52. DOI: 10.1016/j.jmaa.2014.01.039.
[3] HUANG X D, XIN Z P. A blow-up criterion for the compressible Navier-Stokes equations[EB/OL]. (2009-02-16)[2024-12-02]. https://arxiv.org/abs/0902.2606v1.
[4] HUANG X D, LI J, XIN Z P. Serrin-type criterion for the three-dimensional viscous compressible flows[J]. SIAM Journal on Mathematical Analysis, 2011, 43(4): 1872-1886. DOI: 10.1137/100814639.
[5] KIM H. A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations[J]. SIAM Journal on Mathematical Analysis, 2006, 37(5): 1417-1434. DOI: 10.1137/s0036141004442197.
[6] CHO Y, KIM H. Unique solvability for the density-dependent Navier-Stokes equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2004, 59(4): 465-489. DOI: 10.1016/j.na.2004.07.020.
[7] 王金城, 齐进, 吴锤结. 不可压缩Navier-Stokes方程最优动力系统建模和分析[J]. 应用数学和力学, 2020, 41(1): 1-15.
[7] 王金城, 齐进, 吴锤结. 含压力基Navier-Stokes方程最优动力系统建模和分析[J]. 应用数学和力学, 2020, 41(8):817-833.
[8] 李志, 赵文强. 随机反应扩散方程的随机吸引子的高阶稳定性[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 151-158. DOI: 10.16088/j.issn.1001-6600.2023061202.
[9] GUO Z G, O C J. Remarks on the possible blow-up conditions via one velocity component for the 3D Navier-Stokes equations[J]. The Journal of Geometric Analysis, 2024, 34(6): 170. DOI: 10.1007/s12220-024-01613-w.
[10] 王兆伟, 王旦霞. 变密度MHD方程完全解耦且无条件能量稳定的数值算法[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 193-206. DOI: 10.16088/j.issn.1001-6600.2024031701.
[11] 翟翠丽. 非齐次不可压Navier-Stokes和MHD方程的整体适定性研究[D]. 杭州: 浙江大学, 2017.
[12] OKITA M. On the blow-up criterion for the Navier-Stokes equations with critical time order[J]. Journal of Differential Equations, 2023, 349: 269-283. DOI: 10.1016/j.jde.2022.12.040.
[13] 何港晶, 孙小春, 吴育联. 分数阶不可压缩Navier-Stokes方程解的爆破性准则[J]. 云南大学学报(自然科学版), 2024, 46(4): 610-617. DOI: 10.7540/j.ynu.20220230.
[14] 苏士懿. 不可压MHD方程组中的全局正则性的一些探索[J]. 应用数学进展, 2024, 13(2): 599-605. DOI: 10.12677/AAM.2024.132058.
[15] SUN Y Z, WANG C, ZHANG Z F. A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations[J]. Journal deMathématiques Pures et Appliquées, 2011, 95(1): 36-47. DOI: 10.1016/j.matpur.2010.08.001.
[16] HUANG X D, WANG Y. Global strong solution to the 2D nonhomogeneous incompressible MHD system[J]. Journal of Differential Equations, 2013, 254(2): 511-527. DOI: 10.1016/j.jde.2012.08.029.
[1] SHE Lianbing, GAO Yunlong. Backward-compact Dynamics for Non-autonomous Navier-Stokes Equations on Unbounded Domains [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 41-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[6] HUANG Yanguo, XIAO Jie, WU Shuiqing. Bidirectional Efficient Multi-scale Traffic Flow Prediction Based on D2STGNN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 10 -22 .
[7] LIU Zhihao, LI Zili, SU Min. YOLOv8-based Helmet Detection Method for Electric Vehicle Riders Combining Intelligent Communication and UAV-Assistance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 23 -32 .
[8] ZHANG Zhulu, LI Huaqiang, LIU Yang, XU Lixiong. Non-intrusive Load Identification Based on Bi-LSTM Feature Fusion and FT-FSL[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 33 -44 .
[9] WANG Tao, LI Yuansong, SHI Rui, CHEN Huining, HOU Xianqing. MGDE-UNet: Defect Segmentation Model for Lightweight Photovoltaic Cells[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 45 -55 .
[10] HUANG Wenjie, LUO Weiping, CHEN Zhennan, PENG Zhixiang, DING Zihao. Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 56 -67 .