Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (6): 54-68.doi: 10.16088/j.issn.1001-6600.2024100401

• Physical and Electronic Engineering • Previous Articles     Next Articles

Study on Curve Boundary Algorithm of Multiphase Lattice Boltzmann Method Based on Interpolation

LING Fu1,2, ZHANG Yonggang1,2, WEN Binghai1,2*   

  1. 1. Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education (Guangxi Normal University), Guilin Guangxi 541004, China;
    2. Guangxi Key Lab of Multi-Source Information Mining and Security (Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2024-10-04 Revised:2025-01-11 Published:2025-11-19

Abstract: Boundary treatment is a central issue in fluid flow modelling, especially critical in the lattice Boltzmann method (LBM). While the curved boundary conditions effectively improve the accuracy of complex geometrical boundaries in single-phase flow simulations, the conventional curved boundary conditions often lead to significant mass leakage and computational errors in multiphase flow simulations. This is mainly due to the reason that the nonlinear variation of density in the transition region caused by non-ideal effects is not considered in the traditional format of processing curvilinear boundary conditions. In this paper, non-ideal effects are introduced into the interpolation scheme, and a class of interpolation-based curved boundary algorithms for multiphase flow are proposed, including linear interpolation, quadratic interpolation and cubic interpolation schemes. Validated by a series of static and dynamic multiphase flow simulations with large density ratios, the method effectively improves the computational accuracy of the multiphase flow boundary conditions, with the required mass compensation approaching zero, and the imaginary velocity reducing to below by an order of magnitude compared with the previous method.

Key words: curve boundary condition, multiphase flow, surface wettability, lattice Boltzmann method, large density ratio

CLC Number:  O35
[1] FILIPPOVA O, HÄNEL D. Grid refinement for lattice-BGK models[J]. Journal of Computational Physics, 1998, 147(1): 219-228. DOI: 10.1006/jcph.1998.6089.
[2] MEI R W, LUO L S, SHYY W. An accurate curved boundary treatment in the lattice Boltzmann method[J]. Journal of Computational Physics, 1999, 155(2): 307-330. DOI: 10.1006/jcph.1999.6334.
[3] BAO J, YUAN P, SCHAEFER L. A mass conserving boundary condition for the lattice Boltzmann equation method[J]. Journal of Computational Physics, 2008, 227(18): 8472-8487. DOI: 10.1016/j.jcp.2008.06.003.
[4] GUO Z L, ZHENG C G, SHI B C. An extrapolation method for boundary conditions in lattice Boltzmann method[J]. Physics of Fluids, 2002, 14(6): 2007-2010. DOI: 10.1063/1.1471914.
[5] BOUZIDI M, FIRDAOUSS M, LALLEMAND P. Momentum transfer of a Boltzmann-lattice fluid with boundaries[J]. Physics of Fluids, 2001, 13(11): 3452-3459. DOI: 10.1063/1.1399290.
[6] LALLEMAND P, LUO L S. Lattice Boltzmann method for moving boundaries[J]. Journal of Computational Physics, 2003, 184(2): 406-421. DOI: 10.1016/S0021-9991(02)00022-0.
[7] YU D Z, MEI R W, SHYY W. A unified boundary treatment in lattice Boltzmann method[C] //41st Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 2003: 953. DOI: 10.2514/6.2003-953.
[8] TAO S, HE Q, CHEN B M, et al. One-point second-order curved boundary condition for lattice Boltzmann simulation of suspended particles[J]. Computers & Mathematics with Applications, 2018, 76(7): 1593-1607. DOI: 10.1016/j.camwa.2018.07.013.
[9] SHAN X W. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 73(4 Pt 2): 047701. DOI: 10.1103/PhysRevE.73.047701.
[10] BENZI R, BIFERALE L, SBRAGAGLIA M, et al. Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 74(2 Pt 1): 021509. DOI: 10.1103/PhysRevE.74.021509.
[11] YUAN P, SCHAEFER L. Equations of state in a lattice Boltzmann model[J]. Physics of Fluids, 2006, 18(4): 042101. DOI: 10.1063/1.2187070.
[12] HUANG H B, KRAFCZYK M, LU X Y. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 84(4 Pt 2): 046710. DOI: 10.1103/PhysRevE.84.046710.
[13] LI Q, LUO K H, LI X J. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2012, 86(1 Pt 2): 016709. DOI: 10.1103/PhysRevE.86.016709.
[14] LI Q, LUO K H, LI X J. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2013, 87(5): 053301. DOI: 10.1103/PhysRevE.87.053301.
[15] YANG J P, MA X, FEI L L, et al. Effects of hysteresis window on contact angle hysteresis behaviour at large Bond number[J]. Journal of Colloid and Interface Science, 2020, 566: 327-337. DOI: 10.1016/j.jcis.2020.01.042.
[16] WEN B H, ZHOU X, HE B, et al. Chemical-potential-based lattice Boltzmann method for nonideal fluids[J]. Physical Review E, 2017, 95: 063305. DOI: 10.1103/PhysRevE.95.063305.
[17] WEN B H, ZHAO L, QIU W, et al. Chemical-potential multiphase lattice Boltzmann method with superlarge density ratios[J]. Physical Review E, 2020, 102: 013303. DOI: 10.1103/PhysRevE.102.013303.
[18] 何雅玲, 李庆, 王勇, 等. 格子Boltzmann方法的理论及应用[M]. 北京: 高等教育出版社, 2023.
[19] 许爱国, 陈杰, 宋家辉, 等. 多相流系统的离散玻尔兹曼研究进展[J]. 空气动力学学报, 2021, 39(3): 138-169. DOI: 10.7638/kqdlxxb-2021.0021.
[20] 孙佳坤,林传栋,苏咸利,等.离散Boltzmann方程的求解:基于有限体积法[J].物理学报,2024,73(11):40-49.DOI: 10.7498/aps.73.20231984.
[21] D’HUMIÈS D. Generalized lattice-Boltzmann equations, in rarefied gas dynamics: theory and simulations[C] //AIAA Press Washington, DC, 1992,159: 450-458. DOI: 10.2514/5.9781600866319.0450.0458.
[22] LALLEMAND P, LUO L S. Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability[J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 61(6 Pt A): 6546-6562. DOI: 10.1103/physreve.61.6546.
[23] CHAI Z H, SHI B C. Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: Modeling, analysis, and elements[J]. Physical Review E, 2020, 102: 023306. DOI: 10.1103/PhysRevE.102.023306.
[24] KUPERSHTOKH A L, MEDVEDEV D A, KARPOV D I. On equations of state in a lattice Boltzmann method[J]. Computers & Mathematics with Applications, 2009, 58(5): 965-974. DOI: 10.1016/j.camwa.2009.02.024.
[25] MCCRACKEN M E, ABRAHAM J. Multiple-relaxation-time lattice-Boltzmann model for multiphase flow[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 71(3 Pt 2B): 036701. DOI: 10.1103/PhysRevE.71.036701.
[26] 李旭晖,单肖文,段文洋.格子玻尔兹曼正则化碰撞模型的理论进展[J].空气动力学学报,2022,40(3):46-64. DOI: 10.7638/kqdlxxb-2020.0426.
[27] SWIFT M R, OSBORN W R, YEOMANS J M. Lattice Boltzmann simulation of nonideal fluids[J]. Physical Review Letters, 1995, 75(5): 830-833. DOI: 10.1103/PhysRevLett.75.830.
[28] WEN B H, QIN Z R, ZHANG C Y, et al. Thermodynamic-consistent lattice Boltzmann model for nonideal fluids[J]. EPL (Europhysics Letters), 2015, 112(4): 44002. DOI: 10.1209/0295-5075/112/44002.
[29] JAMET D, TORRES D, BRACKBILL J U. On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method[J]. Journal of Computational Physics, 2002, 182(1): 262-276. DOI: 10.1006/jcph.2002.7165.
[30] 李若桐,钟兴国,刘起霖,等.基于格子Boltzmann方法的自由能密度模型[J].广西师范大学学报(自然科学版),2024,42(4):90-99.DOI:10.16088/j.issn.1001-6600.2023080803.
[31] 李庆, 余悦, 唐诗. 多相格子Boltzmann方法及其在相变传热中的应用[J]. 科学通报, 2020, 65(17): 1677-1693. DOI: 10.1360/TB-2019-0769.
[32] 许爱国, 宋家辉, 陈锋, 等. 基于相空间的复杂物理场建模与分析方法[J]. 计算物理, 2021, 38(6): 631-660. DOI: 10.19596/j.cnki.1001-246x.8379.
[33] 杨旭光,汪垒.多相多组分Peng-Robinson流体的正则化格子Boltzmann方法研究及模拟[J].力学学报,2023,55(8): 1649-1661.DOI: 10.6052/0459-1879-23-096.
[34] LIU Y S, YAO Y C, LI Q Y, et al. Contact angle measurement on curved wetting surfaces in multiphase lattice Boltzmann method[J]. Langmuir, 2023, 39(8): 2974-2984. DOI: 10.1021/acs.langmuir.2c02763.
[35] 柴振华,郭照立,施保昌.利用多松弛格子Boltzmann方法预测多孔介质的渗透率[J].工程热物理学报,2010,31(1):107-109.
[36] 娄钦, 汤升, 王浩原. 基于格子Boltzmann大密度比模型的多孔介质内气泡动力学行为数值模拟[J]. 计算物理, 2021, 38(3): 289-300. DOI: 10.19596/j.cnki.1001-246x.8264.
[37] 王卓, 杜林, 成龙, 等. 浸入式边界方法的研究及应用进展[J]. 力学进展, 2023, 53(4): 713-739. DOI: 10.6052/1000-0992-23-026.
[38] 周锦翔, 肖鸿威, ADNAN Khan, 等. 曲壁面两相流的简单扩散界面浸没边界法[J]. 空气动力学学报, 2023, 41(8): 97-106. DOI: 10.7638/kqdlxxb-2022.0133.
[39] 杨鲲,单肖文.多层速度格子Boltzmann方法进展及展望[J].空气动力学学报,2022,40(3):23-45. DOI: 10.7638/kqdlxxb-2021.0348.
[40] YU Y, LI Q, WEN Z X. Modified curved boundary scheme for two-phase lattice Boltzmann simulations[J]. Computers & Fluids, 2020, 208: 104638. DOI: 10.1016/j.compfluid.2020.104638.
[41] 王习文, 叶学民, 李丹, 等. 大液滴撞击不同润湿性小球的三维格子Boltzmann方法模拟[J]. 计算物理, 2024, 41(2): 172-181. DOI: 10.19596/j.cnki.1001-246x.8689.
[42] 黄虎,洪宁,梁宏,等.液滴撞击液膜过程的格子Boltzmann方法模拟[J].物理学报,2016,65(8):248-259.
[43] 梁佳, 高明, 陈露, 等. 液滴撞击不同湿润性固壁面上静止液滴的格子Boltzmann研究[J]. 计算物理, 2021, 38(3): 313-323. DOI: 10.19596/j.cnki.1001-246x.8265.
[44] 梁佳,高明,陈露,等.基于格子Boltzmann方法的液滴撞击具有不同润湿性孔板的研究[J].应用数学和力学,2022,43(1):63-76.
[45] BAKSHI S, ROISMAN I V, TROPEA C. Investigations on the impact of a drop onto a small spherical target[J]. Physics of Fluids, 2007, 19(3): 032102. DOI: 10.1063/1.2716065.
[46] FAKHARI A, BOLSTER D. Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: a lattice Boltzmann model for large density and viscosity ratios[J]. Journal of Computational Physics, 2017, 334: 620-638. DOI: 10.1016/j.jcp.2017.01.025.
[1] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29-41.
[2] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42-53.
[3] LI Ruotong, ZHONG Xingguo, LIU Qilin, WEN Binghai. Free-Energy-Density Model Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 90-99.
[4] SHAO Yufu, JI Tingting, YAO Yichen, WEN Binghai. Research on Measurement Algorithm of Contact Angle on Curved Surface Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 44-53.
[5] GUAN Yiming, JI Tingting, YANG Xinyu, WEN Binghai. Computer Simulation of Droplets Bounce Laterally on Chemical Isomerism Surfaces [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 90-100.
[6] LING Fengru, ZHANG Chaoying, CHEN Yanyan, QIN Zhangrong. A Unified Boundary Condition Based on the Halfway Bounce-back Scheme in Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 70-78.
[7] ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26.
[8] QIU Wen, YE Yong, ZHOU Sihao, WEN Binghai. Contact Angle in Micro Droplet Deformation Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 27-37.
[9] HUANG Bingfang,WEN Binghai,QIU Wen,ZHAO Wanling,CHEN Yanyan. Research on Real Time Measurement of Contact Angle Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 34-43.
[10] QIN Zhang-rong, ZHANG Chao-ying, QIU Bin, LI Yuan-yuan, MO Liu-liu. Implementation of the Acceleration Simulation with Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 18-24.
[11] ZHANG Chao-ying, LI Bing-hua, QIN Zhang-rong. Designing of Comprehensive Optimization Parallel Algorithm for Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 142-148.
[12] QIU Bing, WANG Li-long, XUE Ze, LI Hua-bing. Kinetics Characteristic Transitionof Suspended Particle in a Pulsating Flow in Microvessel by Lattice Boltzmann Simulation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] XIE Sheng, MA Haifei, ZHANG Canlong, WANG Zhiwen, WEI Chunrong. Multi-resolution Feature Grounding for Cross-Modal Person Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 69 -79 .
[6] WEI Zishu, CHEN Zhigang, WANG Yanxue, Hasitieer Madetihan. Lightweight Bearing Defect Detection Algorithm Based on SBSI-YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 80 -91 .
[7] YI Jianbing, HU Yayi, CAO Feng, LI Jun, PENG Xin, CHEN Xin. Design of Lightweight Pulmonary Nodules Detection Network on CT Images with Dynamic Channel Pruning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 92 -106 .
[8] LU Mengxiao,ZHANG Yangchun,ZHANG Xiaofeng. Controlling Value Estimation Biasin Successor Features by Distributional Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 107 -119 .
[9] JIANG Yunlu, LU Huijie, HUANG Xiaowen. Application Research of Penalized Weighted Composite Quantile Regression Method in Fixed Effects Panel Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 120 -127 .
[10] DENG Jinna, LIU Qiumei, CHEN Yiming, YANG Aimin. Numerical Simulation and Stability Analysis of Two Kinds of Viscoelastic Moving Plates[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 128 -139 .