Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (5): 91-100.doi: 10.16088/j.issn.1001-6600.2023110603

Previous Articles     Next Articles

A Deep Hybrid Recommendation Algorithm Based on User Behavior Characteristics

DU Shuaiwen, JIN Ting*   

  1. School of Computer Science and Technology, Hainan University, Haikou Hainan 570100, China
  • Received:2023-11-06 Revised:2024-03-02 Online:2024-09-25 Published:2024-10-11

Abstract: The hybrid recommendation model,named IEU-DeepCFM (deep and cross factorization machine information extraction unit),is proposed in this paper,which is based on the deep factorization machine and integrates the information extraction unit and cross network structure. In the proposed model,a fixed representation of each feature is learned by most existing recommendation methods. However,it is recognized that user behavioral preferences change with contextual features,and features have different importance in different contexts. Therefore,inaccurate recommendation results may be caused by the fixed representation of features given by the model. To address this issue,the information extraction unit module is introduced,consisting of a self-attention mechanism and a contextual information extractor. This module learns context-aware feature representations for each feature in various contexts. Subsequently,a deep cross factorization machine is employed to mine low- and high-order features of the user. This enables users to receive more explicit cross-information,ultimately leading to click-through rate predictions based on user behavioral characteristics. The results of ablation and comparison experiments conducted on the MovieLens movie dataset and the Avazu advertising click-through rate dataset demonstrate the improvement in both AUC and LogLoss indicators achieved by the proposed model. This confirms the rationality of the model.

Key words: deep learning, contextual features, information extraction unit, recommendation algorithm, self-attention mechanism

CLC Number:  TP391
[1] 项亮. 推荐系统实践[M]. 北京: 人民邮电出版社, 2012: 5-10.
[2] 崔少国, 独潇, 杨泽田. 多注意力机制融合低高阶特征的神经推荐算法[J]. 计算机工程与应用, 2023, 59(8): 192-199. DOI: 10.3778/j.issn.1002-8331.2112-0570.
[3] 王瑞平, 贾真, 刘畅, 等. 基于DeepFM的深度兴趣因子分解机网络[J]. 计算机科学, 2021, 48(1): 226-232. DOI: 10.11896/jsjkx.191200098.
[4] 刘君良, 李晓光. 个性化推荐系统技术进展[J]. 计算机科学, 2020, 47(7): 47-55. DOI: 10.11896/jsjkx.200200114.
[5] 沈义峰, 金辰曦, 王瑶, 等. 融合时间上下文与特征级信息的推荐算法[J]. 计算机科学与探索, 2023, 17(2): 489-498. DOI: 10.3778/j.issn.1673-9418.2105008.
[6] 孔亚钰, 卢玉洁, 孙中天, 等. 面向强化当前兴趣的图神经网络推荐算法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 151-160. DOI: 10.16088/j.issn.1001-6600.2021071405.
[7] WANG F Y, WANG Y X, LI D S, et al. Enhancing CTR prediction with context-aware feature representation learning[C] //Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY: Association for Computing Machinery, 2022: 343-352. DOI: 10.1145/3477495.3531970.
[8] GUO H F, TANG R M, YE Y M, et al. DeepFM: a factorization-machine based neural network for CTR prediction[C] //Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence(IJCAI-17). Melbourne: IJCAI, 2017: 1725-1731. DOI: 10.24963/ijcai.2017/239.
[9] RENDLE S. Factorization machines[C] // 2010 IEEE International Conference on Data Mining. Los Alamitos, CA: IEEE Computer Society, 2010: 995-1000. DOI: 10.1109/ICDM.2010.127.
[10] WANG R X, FU B, FU G, et al. Deep & cross network for Ad click predictions[C] // Proceedings of the ADKDD'17. New York, NY: Association for Computing Machinery, 2017: 12. DOI: 10.1145/3124749.3124754.
[11] LIAN J X, ZHOU X H, ZHANG F Z, et al.xDeepFM: combining explicit and implicit feature interactions for recommender systems[C] // Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, NY: Association for Computing Machinery, 2018: 1754-1763. DOI: 10.1145/3219819.3220023.
[12] SONG W P, SHI C C, XIAO Z P, et al. AutoInt: automatic feature interaction learning via self-attentive neural networks[C] // Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, NY: Association for Computing Machinery, 2019: 1161-1170. DOI: 10.1145/3357384.3357925.
[13] ADOMAVICIUS G, TUZHILIN A. Context-Aware recommender systems[M] // RICCI F, ROKACH L, SHAPIRA B, et al. Recommender systems handbook. Boston: Springer, 2011: 217-253.
[14] 陈彬, 张荣梅, 张琦. DCFM: 基于深度学习的混合推荐模型[J]. 计算机工程与应用, 2021, 57(3): 150-155. DOI: 10.3778/j.issn.1002-8331.1910-0424.
[15] 刘亦欣, 王家伟, 李自力. 融合注意力与深度因子分解机的时间上下文推荐模型[J]. 计算机与现代化, 2021(11): 22-27. DOI: 10.3969/j.issn.1006-2475.2021.11.005.
[16] 郑浩. 融合上下文信息的深度推荐模型的研究[D]. 保定: 华北电力大学, 2021. DOI: 10.27139/d.cnki.ghbdu.2021.000395.
[17] 王利娥, 王艺汇, 李先贤. POI推荐中的多源数据融合和隐私保护方法[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 87-101. DOI: 10.16088/j.issn.1001-6600.2022021104.
[18] CHEN Z, ZHONG F, CHEN Z, et al. DCAP: deep cross attentional product network for user response prediction[C] //Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York, NY: Association for Computing Machinery, 2021: 221-230. DOI: 10.1145/3459637.3482246.
[19] 唐铄丁. 基于深度兴趣网络的点击率预估模型的研究与实现[D]. 长春: 吉林大学, 2022. DOI: 10.27162/d.cnki.gjlin.2022.006196.
[20] ZHAO W X, MU S L, HOU Y P, et al.Recbole: towards a unified, comprehensive and efficient framework for recommendation algorithms[C] // Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York, NY: Association for Computing Machinery, 2021: 4653-4664. DOI: 10.1145/3459637.3482016.
[21] 邬彤, 于莲芝. 融入注意力网络的深度分解机推荐算法[J]. 电子科技, 2023, 36(1): 38-43, 50. DOI: 10.16180/j.cnki.issn1007-7820.2023.01.006.
[22] HE X N, CHUA T S. Neural factorization machines for sparse predictive analytics[C] // Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval. New York, NY: Association for Computing Machinery, 2017: 355-364. DOI: 10.1145/3077136.3080777.
[23] XIE R B, LING C, WANG Y L, et al. Deep feedback network for recommendation[C] // Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence(IJCAI-20). Yokohama: IJCAI, 2021: 2519-2525. DOI: 10.24963/ijcai.2020/349.
[24] XIAO J, YE H, HE X N, et al. Attentional factorization machines: learning the weight of feature interactions via attention networks[C] // Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17). Melbourne: IJCAI, 2017: 3119-3125. DOI: 10.24963/ijcai.2017/435.
[25] QU Y R, CAI H, REN K, et al. Product-Based neural networks for user response prediction[C] // 2016 IEEE 16th International Conference on Data Mining (ICDM). Los Alamitos, CA: IEEE Computer Society, 2016: 1149-1154. DOI: 10.1109/ICDM.2016.0151.
[26] 杨琳. 基于改进DeepFM模型的广告点击率预测研究[D]. 济南: 山东大学, 2022. DOI: 10.27272/d.cnki.gshdu.2022.003856.
[27] 周芙名. 基于深度学习和用户行为序列的推荐系统研究[D]. 长春: 吉林大学, 2022. DOI: 10.27162/d.cnki.gjlin.2022.006650.
[28] ZHANG W N, QIN J R, GUO W, et al. Deep learning for click-through rate estimation[C] // Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21). Montreal: IJCAI, 2021: 4695-4703. DOI: 10.24963/ijcai.2021/636.
[29] LI Z Y, CHENG W, CHEN Y, et al. Interpretable click-through rate prediction through hierarchical attention[C] //Proceedings of the 13th International Conference on Web Search and Data Mining. New York, NY: Association for Computing Machinery, 2020: 313-321. DOI: 10.1145/3336191.3371785.
[30] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647. DOI: 10.11897/SP.J.1016.2018.01619.
[31] 吴正清, 曹晖, 刘宝锴. 基于注意力卷积神经网络的中文虚假评论检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 26-36. DOI: 10.16088/j.issn.1001-6600.2023020502.
[1] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108-120.
[2] XIAO Yuting, LÜ Xiaoqi, GU Yu, LIU Chuanqiang. Classification of Diabetic Retinopathy Based on Split Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 91-101.
[3] GAO Fei, GUO Xiaobin, YUAN Dongfang, CAO Fujun. Improved PINNs Method for Solving the Convective Dominant Diffusion Equation with Boundary Layer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 33-50.
[4] JIANG Yibo, LIU Huijia, WU Tian. Research on Identification of Lightning Overvoltage in Transmission Line by Improved Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 74-83.
[5] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1-18.
[6] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76-85.
[7] ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87.
[8] LI Yongjie, ZHOU Guihong, LIU Bo. Fusion Algorithm of Face Detection and Head Pose Estimation Based on YOLOv3 Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 95-103.
[9] WU Jun, OUYANG Aijia, ZHANG Lin. Phosphorylation Site Prediction Model Based on Multi-head Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 161-171.
[10] YAN Longchuan, LI Yan, SONG Hu, ZOU Haodong, WANG Lijun. Web Traffic Prediction Based on Prophet-DeepAR [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 172-184.
[11] LU Kaifeng, YANG Yilong, LI Zhi. A Web Service Classification Method Using BERT and DPCNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 87-98.
[12] WU Lingyu, LAN Yang, XIA Haiying. Retinal Image Registration Using Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 122-133.
[13] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[14] YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12.
[15] DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Wenbo, DONG Qing, LIU Chao, ZHANG Qi. Fine-grained Intent Recognition from Pediatric Medical Dialogues with Contrastive Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 1 -10 .
[2] GAO Shengxiang, YANG Yuanzhang, WANG Linqin, MO Shangbin, YU Zhengtao, DONG Ling. Multi-level Disentangled Personalized Speech Synthesis for Out-of-Domain Speakers Adaptation Scenarios[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 11 -21 .
[3] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[4] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[5] ZUO Junyuan, LI Xintong, ZENG Zihan, LIANG Chao, CAI Jinjun. Recent Advances on Metal-Organic Framework-Based Catalysts for Selective Furfural Hydrogenation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 28 -38 .
[6] TAN Quanwei, XUE Guijun, XIE Wenju. Short-Term Heating Load Prediction Model Based on VMD and RDC-Informer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 39 -51 .
[7] LIU Changping, SONG Shuxiang, JIANG Pinqun, CEN Mingcan. Differential Passive N-path Filter Based on Switched Capacitors[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 52 -60 .
[8] WANG Dangshu, SUN Long, DONG Zhen, JIA Rulin, YANG Likang, WU Jiaju, WANG Xinxia. Parameter Optimization Design of Full-Bridge LLC Resonant Converter under Variable Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 61 -71 .
[9] ZHANG Jinzhong, WEI Duqu. Fixed Time Bounded Control of PMSM Chaotic Systems without Initial State Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 72 -78 .
[10] TU Zhirong, LING Haiying, LI Guo, LU Shenglian, QIAN Tingting, CHEN Ming. Lightweight Passion Fruit Detection Method Based on Improved YOLOv7-Tiny[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 79 -90 .