Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (5): 79-90.doi: 10.16088/j.issn.1001-6600.2023120303
Previous Articles Next Articles
TU Zhirong1, LING Haiying1, LI Guo1,2, LU Shenglian1,2*, QIAN Tingting3*, CHEN Ming1,2
[1] 龙燕,杨智优,何梦菲. 基于改进YOLOv7的疏果期苹果目标检测方法[J]. 农业工程学报,2023,39(14):191-199. DOI: 10.11975/j.issn.1002-6819.202305069. [2] GAO F F,FANG W T,SUN X M,et al. A novel apple fruit detection and counting methodology based on deep learning and trunk tracking in modern orchard[J]. Computers and Electronics in Agriculture,2022,197:107000. DOI: 10.1016/j.compag.2022.107000. [3] 王立舒,秦铭霞,雷洁雅,等. 基于改进YOLOv4-Tiny的蓝莓成熟度识别方法[J]. 农业工程学报,2021,37(18):170-178. DOI: 10.11975/j.issn.1002-6819.2021.18.020. [4] 吕佳,李帅军,曾梦瑶,等. 基于半监督SPM-YOLOv5的套袋柑橘检测算法[J]. 农业工程学报,2022,38(18):204-211. DOI: 10.11975/j.issn.1002-6819.2022.18.022. [5] LINKER R,COHEN O,NAOR A. Determination of the number of green apples in RGB images recorded in orchards[J].Computers and Electronics in Agriculture,2012,81:45-57. DOI: 10.1016/j.compag.2011.11.007. [6] LECUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature,2015,521(7553):436-444. DOI: 10.1038/nature14539. [7] 张文龙,南新元. 基于改进YOLOv5的道路车辆跟踪算法[J]. 广西师范大学学报(自然科学版),2022,40(2):49-57. DOI: 10.16088/j.issn.1001-6600.2021081303. [8] 陈文康,陆声链,刘冰浩,等. 基于改进YOLOv4的果园柑橘检测方法研究[J]. 广西师范大学学报(自然科学版),2021,39(5):134-146. DOI: 10.16088/j.issn.1001-6600.2020111404. [9] 郭希岳,李劲松,郑立华,等. 利用Re-YOLOv5和检测区域搜索算法获取大豆植株表型参数[J]. 农业工程学报,2022,38(15):186-194. DOI: 10.11975/j.issn.1002-6819.2022.15.020. [10] 张秀花,静茂凯,袁永伟,等. 基于改进YOLOv3-Tiny的番茄苗分级检测[J]. 农业工程学报,2022,38(1):221-229. DOI: 10.11975/j.issn.1002-6819.2022.01.025. [11] TU S Q,PANG J,LIU H F,et al. Passion fruit detection and counting based on multiple scale faster R-CNN using RGB-D images[J]. Precision Agriculture,2020,21(5):1072-1091. DOI: 10.1007/s11119-020-09709-3. [12] SUN J,HE X F,GE X,et al. Detection of key organs in tomato based on deep migration learning in a complex background[J]. Agriculture,2018,8(12):196. DOI: 10.3390/agriculture8120196. [13] 涂淑琴,黄健,林跃庭,等. 基于改进Faster R-CNN的百香果自动检测[J]. 实验室研究与探索,2021,40(11):32-37. DOI: 10.19927/j.cnki.syyt.2021.11.008. [14] 唐熔钗,伍锡如. 基于改进YOLO-V3网络的百香果实时检测[J]. 广西师范大学学报(自然科学版),2020,38(6):32-39. DOI: 10.16088/j.issn.1001-6600.2020.06.004. [15] LU S L,CHEN W K,ZHANG X,et al. Canopy-attention-YOLOv4-based immature/mature apple fruit detection on dense-foliage tree architectures for early crop load estimation[J]. Computers and Electronics in Agriculture,2022,193:106696. DOI: 10.1016/j.compag.2022.106696. [16] REDMON J,FARHADI A. YOLOv3:an incremental improvement[EB/OL]. (2018-04-08)[2023-11-29]. https://arxiv.org/abs/1804.02767. DOI: 10.48550/arXiv.1804.02767. [17] BOCHKOVSKIY A,WANG C Y,LIAO H Y M,et al. YOLOv4:optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2023-11-29]. https://arxiv.org/abs/2004.10934. DOI: 10.48550/arXiv.2004.10934. [18] GE Z,LIU S T,WANG F,et al. YOLOX:exceeding YOLO series in 2021[EB/OL]. (2021-08-06)[2023-11-29]. https://arxiv.org/abs/2107.08430. DOI: 10.48550/arXiv.2107.08430. [19] WANG C Y,BOCHKOVSKIY A,LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C] // 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos,CA:IEEE Computer Society,2023:7464-7475. DOI: 10.1109/CVPR52729.2023.00721. [20] OU J J,ZHANG R H,LI X M,et al. Research and explainable analysis of a real-time passion fruit detection model based on FSOne-YOLOv7[J]. Agronomy,2023,13(8):1993. DOI: 10.3390/agronomy13081993. [21] 孙俊,吴兆祺,贾忆琳,等. 基于改进YOLOv5s的果园环境葡萄检测[J]. 农业工程学报,2023,39(18):192-200. DOI: 10.11975/j.issn.1002-6819.202306135. [22] JI W,PAN Y,XU B,et al. A real-time apple targets detection method for picking robot based on ShufflenetV2-YOLOX[J]. Agriculture,2022,12(6):856. DOI: 10.3390/agriculture12060856. [23] 罗志聪,李鹏博,宋飞宇,等. 嵌入式设备的轻量化百香果检测模型[J]. 农业机械学报,2022,53(11):262-269,322. DOI: 10.6041/j.issn.1000-1298.2022.11.026. [24] 张日红,区建爽,李小敏,等. 基于改进YOLOv4的轻量化菠萝苗心检测算法[J]. 农业工程学报,2023,39(4):135-143. DOI: 10.11975/j.issn.1002-6819.202210133. [25] PONGENER A,SAGAR V,PAL R K,et al. Physiological and quality changes during postharvest ripening of purple passion fruit (Passiflora edulis Sims)[J]. Fruits,2014,69(1):19-30. DOI: 10.1051/fruits/2013097. [26] LI C,ZHOU A J,YAO A B. Omni-dimensional dynamic convolution[EB/OL]. (2022-09-16)[2023-11-29]. https://arxiv.org/abs/2209.07947. DOI: 10.48550/arXiv.2209.07947. [27] HAN K,WANG Y H,TIAN Q,et al. GhostNet:more features from cheap operations[C] // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos,CA:IEEE Computer Society,2020:1577-1586. DOI: 10.1109/CVPR42600.2020.00165. [28] VASU P K A,GABRIEL J,ZHU J,et al. MobileOne:an improved one millisecond mobile backbone[C] // 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos,CA:IEEE Computer Society,2023:7907-7917. DOI: 10.1109/CVPR52729.2023.00764. [29] MA N N,ZHANG X Y,ZHENG H T,et al. ShuffleNet V2:practical guidelines for efficient CNN architecture design[C] // Computer Vision-ECCV 2018:LNCS Volume 11218. Cham:Springer Nature Switzerland AG,2018:122-138. DOI: 10.1007/978-3-030-01264-9_8. [30] HOWARD A,SANDLER M,CHEN B,et al. Searching for MobileNetV3[C] // 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos,CA:IEEE Computer Society,2019:1314-1324. DOI: 10.1109/ICCV.2019.00140. [31] YANG B,BENDER G,LE Q V,et al. CondConv:conditionally parameterized convolutions for efficient inference[C] //Advances in Neural Information Processing Systems 32 (NeurIPS 2019). Red Hook,NY:Curran Associates Inc.,2019:1307-1318. [32] CHEN Y P,DAI X Y,LIU M C,et al. Dynamic convolution:attention over convolution kernels[C] // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos,CA:IEEE Computer Society,2020:11027-11036. DOI: 10.1109/CVPR42600.2020.01104. [33] LI Y S,CHEN Y P,DAI X Y,et al. Revisiting dynamic convolution via matrix decomposition[EB/OL]. (2021-03-15)[2023-11-29]. https://arxiv.org/abs/2103.08756. DOI: 10.48550/arXiv.2103.08756. |
[1] | LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99-107. |
[2] | ZENG Liang, HU Qian, YANG Tengfei, TAN Weiwei. Substation Personnel Safety Operation Detection Based on L-ConvNeXt Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 102-110. |
[3] | HUANG Yeqi, WANG Mingwei, YAN Rui, LEI Tao. Surface Quality Detection of Diamond Wire Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 123-134. |
[4] | LI Yang, GOU Gang. Lightweight Garbage Detection Method Based on Improved YOLOX [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 80-90. |
[5] | TANG Rongchai, WU Xiru. Real-time Detection of Passion Fruit Based on Improved YOLO-V3 Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 32-39. |
|