Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (5): 101-109.doi: 10.16088/j.issn.1001-6600.2023110802

Previous Articles     Next Articles

A Neural Network Algorithm Based on Penalty Function Method for Solving Non-smooth Pseudoconvex Optimization Problems and Its Applications

HUANG Mantong, YU Xin*   

  1. School of Computer, Electronics and Information, Guangxi University, Nanning Guangxi 530004, China
  • Received:2023-11-08 Revised:2024-02-20 Online:2024-09-25 Published:2024-10-11

Abstract: To address the nonsmooth pseudoconvex optimization problems encountered in practical applications,an innovative solution is proposed:a single-layer neural network algorithm that integrates the concept of penalty functions and the theory of differential inclusions. Firstly,through mathematical theory,it is proved that this algorithm can ensure that the state solutions ultimately converge to the optimal solution of the pseudoconvex optimization problem,thus establishing the correctness of the proposed algorithm. Secondly,the effectiveness of the algorithm is further verified through the analysis of simulated convergence results from two numerical experiments. Finally,the applications of this algorithm to practical problems demonstrate its practical application value in solving pseudoconvex optimization issues. Compared with existing neural network algorithms,this algorithm can not only solve more general pseudoconvex optimization problems with convex inequality and equality constraints but also tackle practical application issues. Moreover,the algorithm has a simple hierarchical structure,does not require the calculation of precise penalty parameters,allows for the selection of any starting point,and does not add any auxiliary variable, which thus provides an effective approach to solving pseudoconvex optimization problems.

Key words: neural network, pseudoconvex optimization, optimal solution, penalty function, practical application

CLC Number:  TP183
[1] HOPFIELD J J,TANK D W. “Neural” computation of decisions in optimization problems[J]. Biological Cybernetics,1985,52 (3):141-152. DOI: 10.1007/BF00339943.
[2] XUE X P,BIAN W. Subgradient-based neural networks for nonsmooth convex optimization problems[J]. IEEE Transactions on Circuits and Systems I:Regular Papers,2008,55(8):2378-2391. DOI: 10.1109/TCSI.2008.920131.
[3] BIAN W,XUE X P. Subgradient-based neural networks for nonsmooth nonconvex optimization problems[J]. IEEE Transactions on Neural Networks,2009,20(6):1024-1038. DOI: 10.1109/TNN.2009.2016340.
[4] GAO X B,LIAO L Z. A new projection-based neural network for constrained variational inequalities[J].IEEE Transactions on Neural Networks,2009,20(3):373-388. DOI: 10.1109/TNN.2008.2006263.
[5] YANG J,HE X,HUANG T W. Neurodynamic approaches for sparse recovery problem with linear inequality constraints[J]. Neural Networks,2022,155:592-601. DOI: 10.1016/j.neunet.2022.09.013.
[6] BIAN W,CHEN X J. Neural network for nonsmooth,nonconvex constrained minimization via smooth approximation[J]. IEEE Transactions on Neural Networks and Learning Systems,2014,25(3):545-556. DOI: 10.1109/TNNLS.2013.2278427.
[7] QIN S T,XUE X P. A two-layer recurrent neural network for nonsmooth convex optimization problems[J]. IEEE Transactions on Neural Networks and Learning Systems,2015,26(6):1149-1160. DOI: 10.1109/TNNLS.2014.2334364.
[8] ZHAO Y,LIAO X F,HE X,et al. Centralized and collective neurodynamic optimization approaches for sparse signal reconstruction via L1-minimization[J]. IEEE Transactions on Neural Networks and Learning Systems,2022,33(12):7488-7501. DOI: 10.1109/TNNLS.2021.3085314.
[9] LI W J,BIAN W,XUE X P. Projected neural network for a class of non-Lipschitz optimization problems with linear constraints[J]. IEEE Transactions on Neural Networks and Learning Systems,2020,31(9):3361-3373. DOI: 10.1109/TNNLS.2019.2944388.
[10] YU X,WU L Z,XU C H,et al. A novel neural network for solving nonsmooth nonconvex optimization problems[J]. IEEE Transactions on Neural Networks and Learning Systems,2020,31(5):1475-1488. DOI: 10.1109/TNNLS.2019.2920408.
[11] LIU Q S,GUO Z S,WANG J. A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization[J]. Neural Networks,2012,26:99-109. DOI: 10.1016/j.neunet.2011.09.001.
[12] QIN S T,YANG X D,XUE X P,et al. A one-layer recurrent neural network for pseudoconvex optimization problems with equality and inequality constraints[J]. IEEE Transactions on Cybernetics,2017,47(10):3063-3074. DOI: 10.1109/TCYB.2016.2567449.
[13] LIU N,QIN S T. A neurodynamic approach to nonlinear optimization problems with affine equality and convex inequality constraints[J]. Neural Networks,2019,109:147-158. DOI: 10.1016/j.neunet.2018.10.010.
[14] LI Q F,LIU Y Q,ZHU L K. Neural network for nonsmooth pseudoconvex optimization with general constraints[J]. Neurocomputing,2014,131:336-347. DOI: 10.1016/j.neucom.2013.10.008.
[15] LIU J X,LIAO X F. A projection neural network to nonsmooth constrained pseudoconvex optimization[J]. IEEE Transactions on Neural Networks and Learning Systems,2023,34(4):2001-2015. DOI: 10.1109/TNNLS.2021.3105732.
[16] XU C,CHAI Y Y,QIN S T,et al. A neurodynamic approach to nonsmooth constrained pseudoconvex optimization problem[J]. Neural Networks,2020,124:180-192. DOI: 10.1016/j.neunet.2019.12.015.
[17] LIU N,WANG J,QIN S T. A one-layer recurrent neural network for nonsmooth pseudoconvex optimization with quasiconvex inequality and affine equality constraints[J]. Neural Networks,2022,147:1-9. DOI: 10.1016/j.neunet.2021.12.001.
[18] PENOT J P,QUANG P H. Generalized convexity of functions and generalized monotonicity of set-valued maps[J]. Journal of Optimization Theory and Applications,1997,92(2):343-356. DOI: 10.1023/A:1022659230603.
[19] 喻昕,陈昭蓉. 一类非光滑非凸优化问题的神经网络方法[J]. 计算机应用研究,2019,36(9):2575-2578. DOI: 10.19734/j.issn.1001-3695.2018.03.0150.
[20] AUBIN J P,CELLINA A. Differential inclusions[M]. Berlin:Springer-Verlag,1984.
[21] SHI X L,WEN G H,YU X H. A discontinuous projection-based algorithm for solving distributed optimization with linear equation constraints[C] // 2020 39th Chinese Control Conference(CCC). Piscataway, NJ: IEEE, 2020:4884-4888. DOI: 10.23919/CCC50068.2020.9189464.
[22] CHENG L,HUO Z G,LIN Y Z,et al. Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks[J]. IEEE Transactions on Neural Networks,2011,22(5):714-726. DOI: 10.1109/TNN.2011.2109735.
[23] 耿焕同,周征礼,沈俊烨,等. 面向约束超多目标优化的双阶段搜索策略研究[J]. 计算机工程与应用,2023,59(7):80-91. DOI: 10.3778/j.issn.1002-8331.2207-0167.
[24] 胡竣涛,时小虎,马德印. 基于均值漂移和遗传算法的护工调度算法[J]. 广西师范大学学报(自然科学版),2021,39(3):27-39. DOI: 10.16088/j.issn.1001-6600.2020061703.
[25] 梁晓萍,罗晓曙. 基于遗传自适应的维纳滤波图像去模糊算法[J]. 广西师范大学学报(自然科学版),2017,35(4):17-23. DOI: 10.16088/j.issn.1001-6600.2017.04.003.
[26] 朱兴淋,汪廷华,赖志勇. 混合策略改进的金豺优化算法[J]. 计算机工程与应用,2024,60(4):99-112. DOI: 10.3778/j.issn.1002-8331.2306-0099.
[27] 符强,孔健明,纪元法,等.基于改进粒子群优化PDI的双补偿时钟同步算法[J].桂林电子科技大学学报,2023,43(1):27-34. DOI: 10.16725/j.cnki.cn45-1351/tn.2023.01.011.
[28] 张潇,宋威. 径向基函数神经网络指导的粒子群优化算法求解多峰优化问题[J]. 小型微型计算机系统,2023,44(11):2529-2537. DOI: 10.20009/j.cnki.21-1106/TP.2022-0163.
[29] 陈森朋,吴佳,陈修云. 基于强化学习的超参数优化方法[J]. 小型微型计算机系统,2020,41(4):679-684. DOI: 10.3969/j.issn.1000-1220.2020.04.002.
[30] 马勇健,史旭华,王佩瑶. 基于两阶段搜索与动态资源分配的约束多目标进化算法[J]. 计算机应用,2024,44(1):269-277. DOI: 10.11772/j.issn.1001-9081.2023010012.
[31] 王波,王浩,杜晓昕,等. 基于亚群和差分进化的混合蜻蜓算法[J]. 计算机应用,2023,43(9):2868-2876. DOI: 10.11772/j.issn.1001-9081.2022060813.
[1] GAO Fei, GUO Xiaobin, YUAN Dongfang, CAO Fujun. Improved PINNs Method for Solving the Convective Dominant Diffusion Equation with Boundary Layer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 33-50.
[2] ZHOU Qiao, ZHAI Jiangtao, JIA Dongsheng, SUN Haoxiang. A Web Attack Detection Method Based on Convolutional Gated Recurrent Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 51-61.
[3] WU Zhengqing, CAO Hui, LIU Baokai. Chinese Fake Review Detection Based on Attention Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 26-36.
[4] OUYANG Shuxin, WANG Mingjun, RONG Chuitian, SUN Huabo. Anomaly Detection of Multidimensional QAR Data Based on Improved LSTM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 49-60.
[5] HAN Xinyue, DENG Changzheng, FU Tian, XIA Pengyu, LIU Xuan. Transient Electromagnetic Defect Identification of Grounding Grid Based on MWOA-Elman Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 53-66.
[6] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1-18.
[7] PAN Haiming, CHEN Qingfeng, QIU Jie, HE Naixu, LIU Chunyu, DU Xiaojing. Multi-hop Knowledge Graph Question Answering Based on Convolution Reasoning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 102-112.
[8] ZHANG Tao, DU Jianmin. Research on Micro-patch Identification of Desert Grassland Based on UAV Remote Sensing [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 50-58.
[9] XIAO Fei, KANG Zengyan, WANG Weihong. Two Algorithms for Prognosis of DenitrificationConditions of A2/O Technology [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 173-184.
[10] HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59-71.
[11] TIAN Sheng, SONG Lin. Traffic Sign Recognition Based on CNN and Bagging Integration [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 35-46.
[12] ZHOU Shengkai, FU Lizhen, SONG Wen’ai. Semantic Similarity Computing Model for Short Text Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 49-56.
[13] DUAN Meiling, PAN Julong. Wearable Fall Detection Based on Bi-directional LSTM Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 141-150.
[14] KONG Yayu, LU Yujie, SUN Zhongtian, XIAO Jingxian, HOU Haochen, CHEN Tingwei. Research on Graph Neural Network Recommendation Algorithms for Reinforcing Current Interest [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 151-160.
[15] LIN Peiqun, HE Huohua, LIN Xukun. Multi-scale Prediction of Expressways' Arrival Volume of Large and Medium-sized Trucks Based on System Relevance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 15-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Wenbo, DONG Qing, LIU Chao, ZHANG Qi. Fine-grained Intent Recognition from Pediatric Medical Dialogues with Contrastive Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 1 -10 .
[2] GAO Shengxiang, YANG Yuanzhang, WANG Linqin, MO Shangbin, YU Zhengtao, DONG Ling. Multi-level Disentangled Personalized Speech Synthesis for Out-of-Domain Speakers Adaptation Scenarios[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 11 -21 .
[3] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[4] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[5] ZUO Junyuan, LI Xintong, ZENG Zihan, LIANG Chao, CAI Jinjun. Recent Advances on Metal-Organic Framework-Based Catalysts for Selective Furfural Hydrogenation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 28 -38 .
[6] TAN Quanwei, XUE Guijun, XIE Wenju. Short-Term Heating Load Prediction Model Based on VMD and RDC-Informer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 39 -51 .
[7] LIU Changping, SONG Shuxiang, JIANG Pinqun, CEN Mingcan. Differential Passive N-path Filter Based on Switched Capacitors[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 52 -60 .
[8] WANG Dangshu, SUN Long, DONG Zhen, JIA Rulin, YANG Likang, WU Jiaju, WANG Xinxia. Parameter Optimization Design of Full-Bridge LLC Resonant Converter under Variable Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 61 -71 .
[9] ZHANG Jinzhong, WEI Duqu. Fixed Time Bounded Control of PMSM Chaotic Systems without Initial State Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 72 -78 .
[10] TU Zhirong, LING Haiying, LI Guo, LU Shenglian, QIAN Tingting, CHEN Ming. Lightweight Passion Fruit Detection Method Based on Improved YOLOv7-Tiny[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 79 -90 .