Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 210-220.doi: 10.16088/j.issn.1001-6600.2022050903

Previous Articles     Next Articles

Preparation of CuO/MIL(Cr, Cu) Composite and Its Performance in Fenton-like Catalytic Degradation of Phenol

YANG Wen1, SU Yingjie1, HOU Dongrui2, LUO Jing1, SUN Qinggong1, ZHANG Mengyang2, YANG Hao2, WANG Jianfeng2*   

  1. 1. School of Chemical Engineering, Zhengzhou University, Zhengzhou Henan 450007, China;
    2. School of Ecology and Environment, Zhengzhou University, Zhengzhou Henan, 450007, China
  • Received:2022-05-09 Revised:2022-05-17 Online:2023-05-25 Published:2023-06-01

Abstract: CuO/MIL(Cr, Cu) heterogeneous Fenton-like catalysts were synthesized by hydrothermal calcination. The CuO/MIL(Cr, Cu) composite was characterized by XRD, FT-IR, SEM, XPS, BET, etc. The results showed that CuO was uniformly dispersed on the surface of the metal-organic framework MIL(Cr, Cu). In addition, the performance of different catalysts for the catalytic degradation of phenol were compared. The results of degradation experiments showed that when the catalyst dosage was 0.3 g/L, the H2O2 concentration was 50 mmol/L, pH=6, and the initial substrate concentration was 30 mg/L, the CuO/MIL(Cr, Cu) composite had the best degradation efficiency as high as almost 100%, better than that of CuO and MIL-101(Cr). Finally, the radical quenching experimentand EPR test proved that ·OH was the main active radical in the catalytic system, and the possible catalytic mechanism was proposed. CuO/MIL(Cr, Cu) composite can degrade phenolic pollutants in the near-neutral range and have good application prospects.

Key words: heterogeneous catalyst, Fenton-like, metal organic framework, copper oxide, phenol wastewater

CLC Number:  X703;TQ426.94
[1] FORTUNY A, FONT J, FABREGAT A. Wet air oxidation of phenol using active carbon as catalyst[J]. Applied Catalysis B: Environmental, 1998, 19(3/4): 165-173. DOI: 10.1016/S0926-3373(98)00072-1.
[2] VILLEGAS L G C, MASHHADI N, CHEN M, et al. A short review of techniques for phenol removal from wastewater[J]. Current Pollution Reports, 2016, 2(3): 157-167. DOI: 10.1007/s40726-016-0035-3.
[3] SUN X F, WANG C W, LI Y B, et al. Treatment of phenolic wastewater by combined UF and NF/RO processes[J]. Desalination, 2015, 355: 68-74. DOI: 10.1016/j.desal.2014.10.018.
[4] KULKARNI S J, KAWARE J P. Review on research for removal of phenol from wastewater[J]. International Journal of Scientific and Research Publications, 2013, 3(4): 1-5.
[5] ALSHABIB M, ONAIZI S A. A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: current status and potential challenges[J]. Separation and Purification Technology, 2019, 219: 186-207. DOI: 10.1016/j.seppur.2019.03.028.
[6] FAN X L, CAO Q Q, MENG F Y, et al. A Fenton-like system of biochar loading Fe-Al layered double hydroxides (FeAl-LDH@BC)/H2O2 for phenol removal[J]. Chemosphere, 2021, 266: 128992. DOI: 10.1016/j.chemosphere.2020.128992.
[7] PI Y H, LI X Y, XIA Q B, et al. Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs)[J]. Chemical Engineering Journal, 2018, 337: 351-371. DOI: 10.1016/j.cej.2017.12.092.
[8] ZANCHETTIN G, DA SILVA FALK G, GÓMEZ GONZÁLEZ S Y, et al. High performance magnetically recoverable Fe3O4 nanocatalysts: fast microwave synthesis and photo-Fenton catalysis under visible-light[J]. Chemical Engineering and Processing-Process Intensification, 2021, 166: 108438. DOI: 10.1016/j.cep.2021.108438.
[9] 邵禹萌,崔宝臣,刘淑芝,等.MIL-101(Cr)催化单过硫酸氢钾降解罗丹明B[J].净水技术,2019,38(10):88-93. DOI:10.15890/j.cnki.jsjs.2019.10.016.
[10] DE VOORDE B V, BUEKEN B, DENAYER J, et al. Adsorptive separation on metal-organic frameworks in the liquid phase[J]. Chemical Society Reviews, 2014, 43(16): 5766-5788. DOI: 10.1039/C4CS00006D.
[11] WU C D, ZHAO M. Incorporation of molecular catalysts in metal-organic frameworks for highly efficient heterogeneous catalysis[J]. Advanced Materials, 2017, 29(14): 1605446. DOI: 10.1002/adma.201605446.
[12] KHAN M S, KHALID M, SHAHID M. What triggers dye adsorption by metal organic frameworks? The current perspectives[J]. Materials Advances, 2020, 1(6): 1575-1601. DOI: 10.1039/D0MA00291G.
[13] 任逸,施梦琦,尹越,等.Fe2O3/MIL-53(Al)催化类芬顿氧化性能及其作用机制研究[J].环境科学学报,2019,39(8):2508-2516. DOI:10.13671/j.hjkxxb.2019.0103.
[14] REN Y, SHI M Q, ZHANG W M, et al. Enhancing the Fenton-like catalytic activity of nFe2O3 by MIL-53(Cu) support: a mechanistic investigation[J]. Environmental Science & Technology, 2020, 54(8): 5258-5267. DOI: 10.1021/acs.est.0c00203.
[15] 张宗伟,李酽,初飞雪.稀土、Fe3+掺杂TiO2光催化降解水中氨氮研究[J].广西师范大学学报(自然科学版),2014,32(2):117-121. DOI:10.3969/j.issn.1001-6600.2014.02.020.
[16] MA R, LIU G M, FENG S H, et al. Optimization and effects of catalytic ozonation of actual phenolic wastewater by CuO/Al2O3[J]. China Petroleum Processing and Petrochemical Technology, 2019, 21(3): 74-80.
[17] 刘剑,王彩瑜,彭钢,等.5A分子筛载CuO对甲基橙的催化湿式过氧化氢氧化[J].材料导报,2018,32(S2):218-222.
[18] ZHONG Z, LI M, FU J H, et al. Construction of Cu-bridged Cu2O/MIL(Fe/Cu) catalyst with enhanced interfacial contact for the synergistic photo-Fenton degradation of thiacloprid[J]. Chemical Engineering Journal, 2020, 395: 125184. DOI: 10.1016/j.cej.2020.125184.
[19] 焦华,王君龙.CuO微/纳米结构的可控合成与红外性质[J].粉末冶金材料科学与工程,2013,18(5):700-705. DOI:10.3969/j.issn.1673-0224.2013.05.013.
[20] 蔡培新,陈建民,顾为芳.YBa2Cu3O7-δ中Cu—O伸缩振动的红外吸收峰[J].低温物理学报,1993,10(5):345-349.
[21] GEORGE A, MAGIMAI ANTONI RAJ D, DHAYAL RAJ A, et al. Morphologically tailored CuO nanostructures toward visible-light-driven photocatalysis[J]. Materials Letters, 2020, 281: 128603. DOI: 10.1016/j.matlet.2020.128603.
[22] BIESINGER M C, PAYNE B P, GROSVENOR A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science, 2011, 257(7): 2717-2730. DOI: 10.1016/j.apsusc.2010.10.051.
[23] ARONNIEMI M, SAINIO J, LAHTINEN J. Chemical state quantification of iron and chromium oxides using XPS: the effect of the background subtraction method[J]. Surface Science, 2005, 578(1/3): 108-123. DOI: 10.1016/j.susc.2005.01.019.
[24] YAO Y J, LU F, ZHU Y P, et al. Magnetic core-shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II[J]. Journal of Hazardous Materials, 2015, 297: 224-233. DOI: 10.1016/j.jhazmat.2015.04.046.
[25] WANG J, FAN D Q, YU T, et al. Improvement of low-temperature hydrothermal stability of Cu/SAPO-34 catalysts by Cu2+ species[J]. Journal of Catalysis, 2015, 322: 84-90. DOI: 10.1016/j.jcat.2014.11.010.
[26] LIU J, CUI J N, ZHAO T Y, et al. Fe3O4-CeO2 loaded on modified activated carbon as efficient heterogeneous catalyst[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 565: 59-69. DOI: 10.1016/j.colsurfa.2018.12.052.
[27] 张丹薇.铜铈二元混合氧化物催化过硫酸氢钾降解苯酚研究[D].哈尔滨:哈尔滨工业大学,2013. DOI:10.7666/d.D594691.
[28] NIU H Y, ZHENG Y, WANG S H, et al. Continuous generation of hydroxyl radicals for highly efficient elimination of chlorophenols and phenols catalyzed by heterogeneous Fenton-like catalysts yolk/shell Pd@Fe3O4@metal organic frameworks[J]. Journal of Hazardous Materials, 2018, 346: 174-183. DOI: 10.1016/j.jhazmat.2017.12.027.
[29] LUO M Y, LI M F, JIANG S, et al. Supported growth of inorganic-organic nanoflowers on 3D hierarchically porous nanofibrous membrane for enhanced enzymatic water treatment[J]. Journal of Hazardous Materials, 2020, 381: 120947. DOI: 10.1016/j.jhazmat.2019.120947.
[30] 方嘉声,于光认,陈晓春,等.石墨烯掺杂分子筛负载氧化铁芬顿催化降解苯酚影响因素的研究[J].环境科学学报,2015,35(11):3529-3537. DOI:10.13671/j.hjkxxb.2014.1069.
[31] 封立伟.Fe/AC非均相Fenton体系降解废水中苯酚研究[J].工业用水与废水,2019,50(3):26-29. DOI:10.3969/j.issn.1009-2455.2019.03.006.
[1] XU Xiangwei, ZHANG Jifu, ZHANG Yun, HU Yunfeng. Adsorption of Crystalline Violet by Bacillus sp. LM-24 in Deep Sea [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 221-231.
[2] QIN Ronghua, SU Chengyuan, LU Xinya, CHEN Zhengpeng, ZHOU Yijie, XIAN Yunchuan. Effects of Cr(Ⅵ) Concentration on the Performance and Microecology of MFC-Granular Sludge Coupling System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 242-254.
[3] XIAO Fei, DING Xusheng, FAN Peipei, WANG Weihong. Structural Characteristics of Environmental Microbial Community Studied by High-throughput Sequencing Technology [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 175-189.
[4] CHEN Qingfeng, YU Zhe, HUANG Shiqi, YAO Duyang, CHEN Wei, WANG Zongping. Research on Fractal Characteristics of Algal-bacterial Granular Sludge [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 163-172.
[5] XIAO Fei, KANG Zengyan, WANG Weihong. Two Algorithms for Prognosis of DenitrificationConditions of A2/O Technology [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 173-184.
[6] WANG Yuchen, SU Chengyuan, DING Fengxiu, WANG Qing, LI Xinjuan, DENG Xue. Current Situation and Prospect of Low Carbon Treatment of Food Waste and Excess Sludge by Anaerobic Co-Digestion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 406-417.
[7] XIAO Fei, DONG Wenming, WANG Weihong. Optimization of Wastewater Containing Nitrogen in Wastewater Treatment Plant Based on Response Surface Methodology [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 210-221.
[8] TANG Linqin, WANG Anliu, SU Chengyuan, DENG Xue, ZHAO Lijian, XIAN Yunchuan, CHEN Yu. Effects of Different Nitrogen Sources on Physicochemical Properties andMicrobial Community of Aerobic Granular Sludge [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 144-153.
[9] FENG Xiu, MA Nannan, ZHI Hongtao, HAN Shuangqiao, ZHANG Xiang. Removal of Low Concentration Cadmium Ion in the Wastewater by Heavy Metal Capturing Agent UDTC [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 63-67.
[10] CHEN Yuan. Photocatalytic Degradation of Tannery Wastewater by Square Flower-like Bi2WO6 under Visible Light [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 60-69.
[11] ZHANG Zong-wei, LI Yan, CHU Fei-xue. Degradation of Ammonia Nitrogen in Wastewater by Lanthanon and Fe3+ Doped TiO2 Photocatalysis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 117-121.
[12] CHEN Meng-lin, SU Cheng-yuan, WANG Jian, HE Xing-cun, HUANG Zhi. Treatment of Reactive Brilliant Blue K-3R Dye Wastewater by Improved Inner Electrolytic-Photocatalytic [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 224-229.
[13] HE Xing-cun, TANG Xiao-lin, MAI Jin-lin, CHEN Meng-lin, HUANG Zhi. Treatment of Reactive Turquoise Blue KN-G by Intensive Iron Internal Electrolysis Combined with Ultrasound [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 230-235.
[14] DENG Hua, LI Qiuyan, ZHOU Ruishuang, PANG Shuyue, LIU Jinyu, KANG Caiyan. Adsorption of Cd(Ⅱ) and Cu(Ⅱ) from Aqueous Solutions by Polygonum Pubescens Blume Powder [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 102-112.
[15] GUO Chen, HAN Biao, PAN Cui, WU Jiemin, CHEN Yinyue, ZHOU Fei, GAN Tian, SHANG Changhua. Optimization of Chromium(Ⅵ) Removal by Pseudomonas [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 113-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Ning, HE Mingxian, LI Yuhui, CHEN Jieping, LI Shilin, MA Jiangming. Optimization of Cutting Propagation Conditions for Alchornea trewioides by Orthogonal Design[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 128 -133 .
[2] XU Qin, MA Chaomei, RAO Weiwen, DENG Lidong. Quantification of Twelve Constituents in the Extracts of Folium ficim icrocarpaeby Ultra-performence Liquid Chromatography-Quadropole Mass Spectrometry[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 80 -86 .
[3] WU Zhu,TIAN Manman,TAN Qiming, CHEN Zhen, WANG Qiuping, HE Jun. Determination of Ginkgolides in Yinlan Tongluo Oral Liquid by HPLC-RID[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 87 -92 .
[4] HU Yucong, CHEN Xu, LUO Jialing. Network Design Model of Customized Bus in Diversified Operationof Multi-origin-destination and Multi-type Vehicle Mixed Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 1 -11 .
[5] LUO Raoshan, SHEN Yanling, SUN Liyuan. Protective Effect of Magnesium-L-Threonateon Dopamine Neurons and Its Mechanism[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 124 -130 .
[6] CHEN Mei-hong, YANG Cui-hong, LI Chuan-qi. Influence of Geosynchronous Satellites on Earth Rotation Angular Velocity and Coriolis Force[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 6 -9 .
[7] CHENG Rui, HE Mingxian, ZHONG Chunying, LUO Shuyi, WU Zhengjun. Comparison of Swimming Ability between Wild and Captive Breeding Shinisaurus crocodilurus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 79 -86 .
[8] WU Lingyu, LAN Yang, XIA Haiying. Retinal Image Registration Using Convolutional Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 122 -133 .
[9] JIANG Xianghui, TAN Rong, YANG Yongping, XIAO Qingzong. Analysis of Network Pharmacology and Confirmation of Mahonia fortunei (Lindl. ) Fedde and Glycyrrhiza uralensis Fisch Decoction for Hepatitis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 198 -209 .
[10] HOU Qianqian, FANG Zhigang, QIN Yu, ZHU Yiwen. Study on the Polarization of Fe4P Clusters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 140 -146 .