Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 191-209.doi: 10.16088/j.issn.1001-6600.2022030701

Previous Articles     Next Articles

CiteSpace Visualization Analysis of Heavy Metal Hyperaccumulators

ZHAO Keyi1,2, ZHANG Ningning1.2, XUE Jieyi1,2, LI Guangluan1,2, LI Yi1,3, YU Fangming1,3, LIU Kehui1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    3. College of Environment and Resource, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2022-03-07 Revised:2022-06-13 Online:2023-05-25 Published:2023-06-01

Abstract: The visual software of CiteSpace 5.8 R3 was used to analyze 5 281 literatures on the field of heavy metal hyperaccumulators (HHMs) extracted from the database of Web of Science Core collection. The results showed as follows: 1)According to the number of publications, the whole study period of HHMs could be divided into three periods, i.e., germination period, accumulation period, and prosperity period. 2)The top contributing countries/regions, institutions, and authors were China, USA, and France; the Chinese Academy of Sciences, Zhejiang University, and the University of Florida; Guillaume Echevarria, Lena Q Ma, and Alan J M Baker, respectively. 3)The hot topics in these three periods were varied from the topics of hyperaccumlators, especially the Ni-hyperaccumlators, distribution and screening, HMs tolerance, and toxic stress of hyperaccumulators in germination period; to the discovery of new hyperaccumulators and the mechanisms of HHMs, the HMs accumulation compares of hyperaccumlators and crops; and then to the new hyperaccumulators report, including the multi-HMs hyperaccumulators, the studies of As-hyperaccumulators and Cd-hyperaccumulators, the combine remediation of hyperaccumulators and microbe, the remediation mechanisms, the strengthen remediation as well as the hyperaccumulators application. 4)Nine, eight, and seven representative knowledge domains were obtained in the three periods based on knowledge domains analysis. 5)Keywords burst detection analysis showed that the last five years of research topics mainly related to the quantitative variation in HHMs and its genetic mechanism, Cd-hyperaccumulators, chemical forms and distributions of HMs, antioxidant mechanism and remediation enhancement techniques of hyperaccumulators, and tailings remediation, etc., which is expected to be focused on in the future continously.

Key words: heavy metals, hyperaccumulators, research hotspots, knowledge base, CiteSpace

CLC Number:  X173;X53
[1] LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils: principles and applicability[J]. Science of the Total Environment, 2018, 633: 206-219. DOI: 10.1016/j.scitotenv.2018.03.161.
[2] ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals: concepts and applications[J]. Chemosphere, 2013, 91(7): 869-881. DOI: 10.1016/j.chemosphere.2013.01.075.
[3] LIU K H, FAN L Q, LI Y, et al. Concentrations and health risks of heavy metals in soils and crops around the Pingle manganese (Mn) mine area in Guangxi Province, China[J]. Environmental Science and Pollution Research, 2018, 25(30): 30180-30190. DOI: 10.1007/s11356-018-2997-8.
[4] 李娜. 土壤重金属污染的植物修复技术研究现状[J]. 中国资源综合利用, 2021, 39(12): 106-108. DOI: 10.3969/j.issn.1008-9500.2021.12.029.
[5] SHEORAN V, SHEORAN A S, POONIA P. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review[J]. Critical Reviews in Environmental Science and Technology, 2010, 41(2): 168-214. DOI: 10.1080/10643380902718418.
[6] BROOKS R R, LEE J, REEVES R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J]. Journal of Geochemical Exploration, 1977, 7: 49-57. DOI: 10.1016/0375-6742(77)90074-7.
[7] 韦朝阳, 陈同斌. 重金属超富集植物及植物修复技术研究进展[J]. 生态学报, 2001,21(7): 1196-1203. DOI: 10.3321/j.issn:1000-0933.2001.07.024.
[8] REEVES R D, BAKER A J M, JAFFRÉ T, et al. A global database for plants that hyperaccumulate metal and metalloid trace elements[J]. New Phytologist, 2018, 218(2): 407-411. DOI: 10.1111/nph.14907.
[9] SAXENA G, PURCHASE D, MULLA S I, et al. Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects[M]//DE VOOGT P. Reviews of Environmental Contamination and Toxicology Volurne 349. Cham: Springer, 2019: 71-131. DOI: 10.1007/398-2019-24.
[10] LIU S L, ALI S, YANG R J, et al. A newly discovered Cd-hyperaccumulator Lantana camara L.[J]. Journal of hazardous materials, 2019, 371: 233-242. DOI: 10.1016/j.jhazmat.2019.03.016.
[11] LUO Q, WANG S Y, SUN L N, et al. Metabolic profiling of root exudates from two ecotypes of Sedum alfredii treated with Pb based on GC-MS[J]. Scientific Reports, 2017, 7(1): 39878. DOI: 10.1038/srep39878.
[12] LI Y, LIN J M, HUANG Y Y, et al. Bioaugmentation-assisted phytoremediation of manganese and cadmium co-contaminated soil by Polygonaceae plants (Polygonum hydropiper L. and Polygonum lapathifolium L.) and Enterobacter sp. FM-1[J]. Plant and Soil, 2020, 448(1): 439-453. DOI: 10.1007/s11104-020-04447-x.
[13] REEVES R D, VAN DER ENT A, BAKER A J M. Global distribution and ecology of hyperaccumulator plants[M]//VAN DER ENT A, ECHEVARRIA G, BAKER A J M, et al. Agromining: farming for metals. Cham: Springer, 2017: 75-92. DOI: 10.1007/978-3-319-61899-9-5.
[14] LI J T, GURAJALA H K, WU L H, et al. Hyperaccumulator plants from China: a synthesis of the current state of knowledge[J]. Environmental Science & Technology, 2018, 52(21): 11980-11994. DOI: 10.1021/acs.est.8b01060.
[15] 刘哲, 薛欢, 曾超珍, 等. 植物超富集重金属的元素防御假说研究进展[J]. 植物生理学报, 2020, 56(7): 1337-1345. DOI: 10.13592/j.cnki.ppj.2019.0618.
[16] 官晓金, 赵珂艺, 刘世玲, 等. 近 30 年全球锰污染植物修复研究进展:基于 CiteSpace 的可视化分析[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 44-57. DOI: 10.16088/j.issn.1001-6600.2021030801.
[17] LIU K H, GUAN X J, LI C M, et al. Globalperspectives and future research directions for the phytoremediation of heavy metal-contaminated soil: a knowledge mapping analysis from 2001 to 2020[J]. Frontiers of Environmental Science & Engineering, 2022, 16(6):73. DOI: 10.1007/s11783-021-1507-2.
[18] 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253. DOI: 10.16192/j.cnki.1003-2053.2015.02.009.
[19] LIU K H, GUAN X J, LI G L, et al. Publication characteristics, topic trends and knowledge domains of karst ecological restoration: a bibliometric and knowledge mapping analysis from 1991 to 2021[J]. Plant and Soil, 2022,475(1): 169-187. DOI: 10.1007/s11104-022-05345-0.
[20] JAFFRÉ T, BROOKS R R, LEE J, et al. Sebertia acuminata: a hyperaccumulator of nickel from new Caledonia[J]. Science, 1976, 193(4253): 579-580. DOI: 10.1126/science.193.4253.579.
[21] SALT D E, SMITH R D, RASKIN I. Phytoremediation[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49(1): 643-668.
[22] BROWN S L, CHANEY R L, ANGLE J S, et al. Phytoremediation potential of Thlaspi caerulescens and Bladder Campion for zinc-and cadmium-contaminated soil[J]. Journal of Environmental Quality, 1994,23(6):1151-1157. DOI: 10.2134/jeq1994.00472425002300060004x.
[23] SCHLEGEL H G, COSSON J P, BAKER A J M. Nickel-hyperaccumulating plants provide a niche for nickel-resistant bacteria[J]. Botanica Acta, 1991,104(1):18-25. DOI: 10.1111/j.1438-8677.1991.tb00189.x.
[24] STOPPEL R, SCHLEGEL H G. Nickel-resistant bacteria from anthropogenically nickel-polluted and naturally nickel-percolated ecosystems[J]. Applied Environmental Microbiology, 1995, 61(6): 2276-2285. DOI: 10.1128/aem.61.6.2276-2285.1995.
[25] GABBRIELLI R L, MATTIONI C, VERGNANO O. Accumulation mechanisms and heavy metal tolerance of a nickel hyperaccumulator[J]. Journal of Plant Nutrition, 1991, 14(10): 1067-1080. DOI: 10.1080/01904169109364266.
[26] NOBLE A D, HUGHES J C. Sequential fractionation of chromium and nickel from some serpentinite-derived soils from the eastern Transvaal[J]. Communications in Soil Science and Plant Analysis, 1991, 22(19/20): 1963-1973. DOI: 10.1080/00103629109368550.
[27] REEVES R D, BAKER A J M, BORHIDI A, et al. Nickel-accumulating plants from the ancient serpentine soils of Cuba[J]. New Phytologist, 1996, 133(2): 217-224. DOI: 10.1111/j.1469-8137.1996.tb01888.x.
[28] BAKER A J M, REEVES R D, HAJER A S M. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. and C. Presl (Brassicaceae)[J]. The New phytologist, 1994, 127(1): 61-68.
[29] BERNAL M P, MCGRATH S P, MILLER A J, et al. Comparison of the chemical changes in the rhizosphere of the nickel hyperaccumulator Alyssum murale with the non-accumulator Raphanus sativus[J]. Plant and Soil, 1994, 164(2): 251-259. DOI: 10.1007/BF00010077.
[30] PEER W A, MAMOUDIAN M, LAHNER B, et al. Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area[J]. New Phytologist, 2003, 159(2): 421-430. DOI: 10.1046/j.1469-8137.2003.00822.x.
[31] BECHER M, TALKE I N, KRALL L, et al. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri[J]. The Plant Journal, 2004, 37(2): 251-268. DOI: 10.1046/j.1365-313X.2003.01959.x.
[32] JHEE E M, DANDRIDGE K L, CHRISTY A M, et al. Selective herbivory on low-zinc phenotypes of the hyperaccumulator Thlaspi caerulescens (Brassicaceae)[J]. Chemoecology, 1999, 9(2): 93-95. DOI: 10.1007/s000490050038.
[33] MA L Q, KOMAR K M, TU C, et al. A fern that hyperaccumulates arsenic[J]. Nature, 2001, 409(6820): 579-579. DOI: 10.1038/35054664.
[34] FAYIGA A O, MA L Q. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata[J]. Science of the Total Environment, 2006, 359(1/2/3): 17-25. DOI: 10.1016/j.scitotenv.2005.06.001.
[35] LASAT M M, BAKER A J, KOCHIAN L V. Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens[J]. Plant Physiology, 1998, 118(3): 875-883. DOI: 10.1104/pp.118.3.875.
[36] PENCE N S, LARSEN P B, EBBS S D, et al. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(9): 4956-4960. DOI: 10.1073/pnas.97.9.4956.
[37] EBBS S D, KOCHIAN L V. Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea)[J]. Environmental Science & Technology, 1998, 32(6): 802-806. DOI: 10.1021/es970698p.
[38] CRIST R H, MARTIN J R, CRIST D R. Ion-exchange aspects of toxic metal uptake by Indian mustard[J]. International Journal of Phytoremediation, 2004, 6(1): 85-94. DOI: 10.1080/16226510490440006.
[39] LIM J M, SALIDO A L, BUTCHER D J. Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics[J]. Microchemical Journal, 2004, 76(1/2): 3-9. DOI: 10.1016/j.microc.2003.10.002.
[40] PASTERNAK M, LIM B, WIRTZ M, et al. Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development[J]. The Plant Journal, 2008, 53(6): 999-1012. DOI: 10.1111/j.1365-313X.2007.03389.x.
[41] JIN X F, YANG X E, MAHMOOD Q, et al. Response of antioxidant enzymes,ascorbate and glutathione metabolism towards cadmium in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii H.[J]. Environmental Toxicology, 2008, 23(4): 517-529. DOI: 10.1002/tox.20362.
[42] COSIO C, DESANTIS L, FREY B, et al. Distribution of cadmium in leaves of Thlaspi caerulescens[J]. Journal of Experimental Botany, 2005, 56(412): 765-775. DOI: 10.1093/jxb/eri062.
[43] DIWAN H, AHMAD A, IQBAL M. Uptake-related parameters as indices of phytoremediation potential[J].Biologia, 2010, 65(6): 1004-1011. DOI: 10.2478/s11756-010-0106-7.
[44] GOMES M P, MARQUES R Z, NASCENTES C C, et al. Synergistic effects between arbuscular mycorrhizal fungi and rhizobium isolated from As-contaminated soils on the As-phytoremediation capacity of the tropical woody legume Anadenanthera peregrina[J]. International Journal of Phytoremediation, 2020, 22(13): 1362-1371. DOI: 10.1080/15226514.2020.1775548.
[45] PINEAU C, LOUBET S, LEFOULON C, et al. Natural variation at the FRD3 MATE transporter locus revealscross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana[J]. PLoS Genet, 2012, 8(12): e1003120. DOI: 10.1371/journal.pgen.1003120.
[46] ZEMANOVÁ V, PAVLÍK M, PAVLÍKOVÁ D, et al. The significance of methionine, histidine and tryptophan in plant responses and adaptation to cadmium stress[J]. Plant, Soil and Environment, 2014, 60(9): 426-432. DOI: 10.17221/544/2014-PSE.
[47] PRZEDPEŁSKA-WASOWICZ E, POLATAJKO A, WIERZBICKA M. The influence of cadmium stress on the content of mineral nutrients and metal-binding proteins in Arabidopsis halleri[J]. Water, Air, & Soil Pollution, 2012, 223(8): 5445-5458. DOI: 10.1007/s11270-012-1292-4.
[48] MARTÍNEZ-ALCALÁ I, CLEMENTE R, BERNAL M P. Interactions between the hyperaccumulator Noccaea caerulescens and Brassica juncea or Lupinus albus for phytoextraction[J]. Agronomy, 2020, 10(9): 1367. DOI: 10.3390/agronomy10091367.
[49] LEIGH BROADHURST C, TAPPERO R V, MAUGEL T K, et al. Interaction of nickel and manganese in accumulation and localization in leaves of the Ni hyperaccumulators Alyssum murale and Alyssum corsicum[J]. Plant and Soil, 2009, 314(1): 35-48. DOI: 10.1007/s11104-008-9703-4.
[50] NKRUMAH P N, ECHEVARRIA G, ERSKINE P D, et al. Growth effects in tropical nickel-agromining ‘metal crops’ in response to nutrient dosing[J]. Journal of Plant Nutrition and Soil Science, 2019, 182(5): 715-728. DOI: 10.1002/jpln.201800468.
[51] PARDO T, RODRÍGUEZ-GARRIDO B, SAAD R F, et al. Assessing the agromining potential of Mediterranean nickel-hyperaccumulating plant species at field-scale in ultramafic soils under humid-temperate climate[J]. Science of the Total Environment, 2018, 630: 275-286. DOI: 10.1016/j.scitotenv.2018.02.229.
[52] KIDD P S, BANI A, BENIZRI E, et al. Developing sustainableagromining systems in agricultural ultramafic soils for nickel recovery[J]. Frontiers in Environmental Science, 2018, 6: 44. DOI: 10.3389/fenvs.2018.00044.
[53] NKRUMAH P N, TISSERAND R, CHANEY R L, et al. The first tropical ‘metal farm’: some perspectives from field and pot experiments[J]. Journal of Geochemical Exploration, 2019, 198: 114-122. DOI: 10.1016/j.gexplo.2018.12.003.
[54] 段桂兰, 王利红, 陈玉, 等. 植物超富集砷机制研究的最新进展[J]. 环境科学学报, 2007, 27(5): 714-720. DOI: 10.3321/j.issn:0253-2468.2007.05.002.
[55] WANG H B, WONG M H, LAN C Y, et al. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China[J]. Environmental Pollution, 2007, 145(1): 225-233. DOI: 10.1016/j.envpol.2006.03.015.
[56] WANG H B, YE Z H, SHU W S, et al. Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of southern China: field surveys[J]. International Journal of Phytoremediation, 2006, 8(1): 1-11. DOI: 10.1080/16226510500214517.
[57] 陈焱山, 贾梦茹, 曹越, 等. 蜈蚣草砷富集的分子机制研究进展[J]. 农业环境科学学报, 2018, 37(7): 1402-1408. DOI: 10.11654/jaes.2018-0563.
[58] 李熠, 陈熹, 肖丕显, 等. 中国镉超富集植物种类组成及分布特征研究[J]. 中国野生植物资源, 2020, 39(6): 11-16. DOI: 10.3969/j.issn.1006-9690.2020.06.003.
[59] ZHANG S R, LIN H C, DENG L J, et al. Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L.[J]. Ecological Engineering, 2013, 51: 133-139. DOI: 10.1016/j.ecoleng.2012.12.080.
[60] 刘周莉, 何兴元, 陈玮. 忍冬:一种新发现的镉超富集植物[J]. 生态环境学报, 2013, 22(4): 666-670. DOI: 10.3969/j.issn.1674-5906.2013.04.020.
[61] LIU K H, ZHOU Z M, YU F M, et al. A newly found cadmium hyperaccumulator:Centella asiatica Linn.[J]. Fresenius Environmental Bulletin, 2016, 25(9): 3815-3822.
[62] GUO H, JIANG J W, GAO J Q, et al. Evaluation of cadmium hyperaccumulation and tolerance potential of Myriophyllum aquaticum[J]. Ecotoxicology and Environmental Safety, 2020, 195: 110502. DOI: 10.1016/j.ecoenv.2020.110502.
[63] YANG G L, ZHENG M M, TAN A J, et al. Research on the mechanisms of plant enrichment and detoxification of cadmium[J]. Biology, 2021, 10(6): 544. DOI: 10.3390/biology10060544.
[64] RAZA A, HABIB M, KAKAVAND S N, et al. Phytoremediation of cadmium: physiological, biochemical, and molecular mechanisms[J]. Biology, 2020, 9(7): 177. DOI: 10.3390/biology9070177.
[65] 于方明, 余秋平, 刘可慧, 等. 肠杆菌 FM-1 强化积雪草修复镉污染土壤机理[J]. 中国环境科学, 2018, 38(12): 4625-4630. DOI: 10.3969/j.issn.1000-6923.2018.12.029.
[66] LI Y, LIU K H, WANG Y, et al. Improvement of cadmium phytoremediation by Centella asiatica L. after soil inoculation with cadmium-resistant Enterobacter sp. FM-1[J]. Chemosphere, 2018, 202: 280-288. DOI: 10.1016/j.chemosphere.2018.03.097.
[67] FREEMAN J L, TAMAOKI M, STUSHNOFF C, et al. Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata[J]. Plant Physiology, 2010, 153(4): 1630-1652. DOI: 10.1104/pp.110.156570.
[68] FREEMAN J L, MARCUS M A, FAKRA S C, et al. Selenium hyperaccumulator plants Stanleya pinnata and Astragalus bisulcatus are colonized by Se-resistant, Se-excluding wasp and beetle seed herbivores[J]. PLoS One, 2012, 7(12): e50516. DOI: 10.1371/journal.pone.0050516.
[69] CHEN C M, HU Z G, LIU S B, et al. Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace[J]. Expert Opinion on Biological Therapy, 2012, 12(5): 593-608. DOI: 10.1517/14712598.2012.674507.
[70] 张小丽, 陈泽柠, 武正军. 蜥蜴与气候变化的研究热点演变分析:基于Web of Science数据库[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 332-341. DOI: 10.16088/j.issn.1001-6600.2021100911.
[71] BAKER A J M, BROOKS R R. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989, 1(2): 81-126.
[72] BROOKS R R, MORRISON R S, REEVES R D, et al. Hyperaccumulation of nickel by Alyssum linnaeus (Cruciferae)[J]. Proceedings of the Royal Society of London: Series B Biological Sciences, 1979, 203(1153): 387-403. DOI: 10.1098/rspb.1979.0005.
[73] KRÄMER U, COTTER-HOWELLS J D, CHARNOCK J M, et al. Free histidine as a metal chelator in plants that accumulate nickel[J]. Nature, 1996, 379(6566): 635-638. DOI: 10.1038/379635a0.
[74] KRÄMER U. Metal hyperaccumulation in plants[J]. Annual Review of Plant Biology, 2010, 61: 517-534. DOI: 10.1146/annurev-arplant-042809-112156.
[75] VAN DER ENT A, BAKER A J M, REEVES R D, et al. Hyperaccumulators of metal and metalloid trace elements: facts and fiction[J]. Plant and Soil, 2013, 362(1): 319-334. DOI: 10.1007/s11104-012-1287-3.
[76] LOMBI E, ZHAO F J, FUHRMANN M, et al. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata[J]. New Phytologist, 2002, 156(2): 195-203. DOI: 10.1046/j.1469-8137.2002.00512.x.
[77] CORSO M, AN X H, JONES C Y, et al. Adaptation of Arabidopsis halleri to extreme metal pollution through limited metal accumulation involves changes in cell wall composition and metal homeostasis[J]. New Phytologist, 2021, 230(2): 669-682. DOI: 10.1111/nph.17173.
[78] BABST-KOSTECKA A, SCHAT H, SAUMITOU-LAPRADE P, et al. Evolutionary dynamics of quantitative variation in an adaptive trait at the regional scale: the case of zinc hyperaccumulation in Arabidopsis halleri[J]. Molecular Ecology, 2018, 27(16): 3257-3273. DOI: 10.1111/mec.14800.
[79] MEYER C L, JURANIEC M, HUGUET S, et al. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri[J]. Journal of Experimental Botany, 2015, 66(11): 3215-3227. DOI: 10.1093/jxb/erv144.
[80] DIETRICH C C, TANDY S, MURAWSKA-WLODARCZYK K, et al. Phytoextraction efficiency of Arabidopsis halleri is driven by the plant and not by soil metal concentration[J]. Chemosphere, 2021, 285: 131437. DOI: 10.1016/j.chemosphere.2021.131437.
[81] 陈春强, 邓华, 陈小梅. 广西3个锰矿恢复区农作物重金属健康风险评价[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 127-135. DOI: 10.16088/j.issn.1001-6600.2017.04.018.
[82] HE S Y, YANG X E, HE Z L, et al. Morphological and physiological responses of plants to cadmium toxicity: a review[J]. Pedosphere, 2017, 27(3): 421-438. DOI: 10.1016/S1002-0160(17)60339-4.
[83] GONNEAU C, NORET N, GODÉ C, et al. Demographic history of the trace metal hyperaccumulator Noccaea caerulescens (J. Presl and C. Presl) F. K. Mey. in western Europe[J]. Molecular Ecology, 2017, 26(3): 904-922. DOI: 10.1111/mec.13942.
[84] STOPLE C, KRÄMER U, MÜLLER C. Heavy metal (hyper)accumulation in leaves of Arabidopsis halleri is accompanied by a reduced performance of herbivores and shifts in leaf glucosinolate and element concentrations[J]. Environmental and Experimental Botany, 2017, 133: 78-86. DOI: 10.1016/j.envexpbot.2016.10.003.
[85] MALECKA A, KONKOLEWSKA A, HANC′ A, et al. Insight into the phytoremediation capability of Brassica juncea (v. Malopolska): metal accumulation and antioxidant enzyme activity[J]. International Journal of Molecular Sciences, 2019, 20(18): 4355. DOI: 10.3390/ijms20184355.
[86] FARID M, ALI S, ZUBAIR M, et al. Glutamic acid assisted phyto-management of silver-contaminated soils through sunflower; physiological and biochemical response[J]. Environmental Science and Pollution Research International, 2018, 25(25): 25390-25400. DOI: 10.1007/s11356-018-2508-y.
[87] LOPEZ S, GOUX X, VAN DER ENT A, et al. Bacterial community diversity in the rhizosphere of nickel hyperaccumulator species of Halmahera Island (Indonesia)[J]. Applied Soil Ecology, 2019, 133:70-80. DOI: 10.1016/j.apsoil.2018.09.007.
[88] GUARINO F, CONTE B, IMPROTA G, et al. Genetic characterization, micropropagation, and potential use for arsenic phytoremediation of Dittrichia viscosa (L.) Greuter[J]. Ecotoxicology and Environmental Safety, 2018, 148: 675-683. DOI: 10.1016/j.ecoenv.2017.11.010.
[89] NARAYANAN M, NATARAJAN D, KANDASAMY G, et al. Phytoremediation competence of short-term crops on magnesite mine tailing[J]. Chemosphere, 2021, 270: 128641. DOI: 10.1016/j.chemosphere.2020.128641.
[1] ZHANG Xiaoli, CHEN Zening, WU Zhengjun. Analysis of the Evolution of Research Hotspots on Lizards and Climate Change: Based on the Web of Science Database [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 332-341.
[2] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22-34.
[3] GUAN Xiaojin, ZHAO Keyi, LIU Shiling, LI Yi, YU Fangming, LI Chunming, LIU Kehui. Global Trends and Hot Topics in the Field of Manganese Phytoremediation over the Past Three Decades: A Review Based on Citespace Visualization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 44-57.
[4] PENG Limei, ZHAO Li, ZHOU Wu, HU Yueming. Risk Assessment of Heavy Metals in Cultivated Land in Conghua District of Guangzhou City, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 118-129.
[5] XU Tingting, YU Qiuping, QI Peiyi, LIU Kehui, LI Yi, JIANG Yongrong, YU Fangming. Effects of Different Washing Solutions on the Desorption of Heavy Metals from a Lead-zinc Mine Soil [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 188-193.
[6] ZHENG Haixia, WANG Yue, CHEN Fen, GOU Chaoyang, ZHENG Qingrong. Pollution Characteristics and Potential Ecological Risk Assessmentof Soil Heavy Metal in the South Top of Wutai Mountain, Shanxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 99-107.
[7] LIAO Yuan-xiu, ZHOU Sheng-ming, QIN Shao-hua. The Internet of Things with Knowledge Service Functionality [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 42-47.
[8] ZHANG Jun, LI Dao-hong, DU Dian-song. Enrichment of Heavy Metals in Diestrammena from Longjing Cave and Bailong Cave of Guizhou,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 104-109.
[9] DENG Hua, XU Dan-dan, LI Ming-shun, LI Jin-cheng. Comparison of Different Digestion Methods in Analyzing Heavy Metals Content in Soils [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 80-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHOU Wei, SUN Chao, ZHOU Haitao. Nomenclatural Status Textual Criticism about Two Species of Garrafrom Lancangjiang(the Upper Mekong), China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 117 -125 .
[2] YANG Qiong, WEI Mu-lan, LAN Jia-hu, YANG Qin. A New Species of the Genus Oreonectes (Balitoridae) from Guangxi,China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 72 -75 .
[3] LIU Xi-liang, BIN Shi-yu, WANG Kai-zhuo, CHEN Dun-xue, CHENG Jia, ZHANG Jian-she, CHU Wu-ying. Artificial Propagation and Embryonic Development Observation of Mandarin Fish[J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 100 -106 .
[4] BIN Shiyu, LIAO Fang, DU Xuesong, XU Yilan, WANG Xin, WU Xia, LIN Yong. Research Progress on Cold Tolerance of Tilapia[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 10 -16 .
[5] CHEN Danni, CHEN Zhilin, ZHOU Shanyi. A Checklist of Family Formicidae of China: Myrmecinae (Addendum) (Insect: Hymenoptera)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 87 -97 .
[6] XU Guoliang. Seven New Records of Ferns from Guangdong, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 114 -118 .
[7] LI Bing, LI Zhi, YANG Yilong. Classification of Non-Functional Software Requirements Using Word Embeddings and Long Short-Term Memory[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 110 -121 .
[8] RUAN Wenjing, YANG Qigui. Research on Complex Dynamics of a New Four-dimensional Hyperchaotic System with Finite and Infinite Isolated Singularities[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 173 -181 .
[9] SHAO Yufu, JI Tingting, YAO Yichen, WEN Binghai. Research on Measurement Algorithm of Contact Angle on Curved Surface Based on Lattice Boltzmann Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 44 -53 .
[10] DU Jinfeng, WANG Hairong, LIANG Huan, WANG Dong. Progress of Cross-modal Retrieval Methods Based on Representation Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 1 -12 .