Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 191-209.doi: 10.16088/j.issn.1001-6600.2022030701
Previous Articles Next Articles
ZHAO Keyi1,2, ZHANG Ningning1.2, XUE Jieyi1,2, LI Guangluan1,2, LI Yi1,3, YU Fangming1,3, LIU Kehui1,2*
[1] LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils: principles and applicability[J]. Science of the Total Environment, 2018, 633: 206-219. DOI: 10.1016/j.scitotenv.2018.03.161. [2] ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals: concepts and applications[J]. Chemosphere, 2013, 91(7): 869-881. DOI: 10.1016/j.chemosphere.2013.01.075. [3] LIU K H, FAN L Q, LI Y, et al. Concentrations and health risks of heavy metals in soils and crops around the Pingle manganese (Mn) mine area in Guangxi Province, China[J]. Environmental Science and Pollution Research, 2018, 25(30): 30180-30190. DOI: 10.1007/s11356-018-2997-8. [4] 李娜. 土壤重金属污染的植物修复技术研究现状[J]. 中国资源综合利用, 2021, 39(12): 106-108. DOI: 10.3969/j.issn.1008-9500.2021.12.029. [5] SHEORAN V, SHEORAN A S, POONIA P. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review[J]. Critical Reviews in Environmental Science and Technology, 2010, 41(2): 168-214. DOI: 10.1080/10643380902718418. [6] BROOKS R R, LEE J, REEVES R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J]. Journal of Geochemical Exploration, 1977, 7: 49-57. DOI: 10.1016/0375-6742(77)90074-7. [7] 韦朝阳, 陈同斌. 重金属超富集植物及植物修复技术研究进展[J]. 生态学报, 2001,21(7): 1196-1203. DOI: 10.3321/j.issn:1000-0933.2001.07.024. [8] REEVES R D, BAKER A J M, JAFFRÉ T, et al. A global database for plants that hyperaccumulate metal and metalloid trace elements[J]. New Phytologist, 2018, 218(2): 407-411. DOI: 10.1111/nph.14907. [9] SAXENA G, PURCHASE D, MULLA S I, et al. Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects[M]//DE VOOGT P. Reviews of Environmental Contamination and Toxicology Volurne 349. Cham: Springer, 2019: 71-131. DOI: 10.1007/398-2019-24. [10] LIU S L, ALI S, YANG R J, et al. A newly discovered Cd-hyperaccumulator Lantana camara L.[J]. Journal of hazardous materials, 2019, 371: 233-242. DOI: 10.1016/j.jhazmat.2019.03.016. [11] LUO Q, WANG S Y, SUN L N, et al. Metabolic profiling of root exudates from two ecotypes of Sedum alfredii treated with Pb based on GC-MS[J]. Scientific Reports, 2017, 7(1): 39878. DOI: 10.1038/srep39878. [12] LI Y, LIN J M, HUANG Y Y, et al. Bioaugmentation-assisted phytoremediation of manganese and cadmium co-contaminated soil by Polygonaceae plants (Polygonum hydropiper L. and Polygonum lapathifolium L.) and Enterobacter sp. FM-1[J]. Plant and Soil, 2020, 448(1): 439-453. DOI: 10.1007/s11104-020-04447-x. [13] REEVES R D, VAN DER ENT A, BAKER A J M. Global distribution and ecology of hyperaccumulator plants[M]//VAN DER ENT A, ECHEVARRIA G, BAKER A J M, et al. Agromining: farming for metals. Cham: Springer, 2017: 75-92. DOI: 10.1007/978-3-319-61899-9-5. [14] LI J T, GURAJALA H K, WU L H, et al. Hyperaccumulator plants from China: a synthesis of the current state of knowledge[J]. Environmental Science & Technology, 2018, 52(21): 11980-11994. DOI: 10.1021/acs.est.8b01060. [15] 刘哲, 薛欢, 曾超珍, 等. 植物超富集重金属的元素防御假说研究进展[J]. 植物生理学报, 2020, 56(7): 1337-1345. DOI: 10.13592/j.cnki.ppj.2019.0618. [16] 官晓金, 赵珂艺, 刘世玲, 等. 近 30 年全球锰污染植物修复研究进展:基于 CiteSpace 的可视化分析[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 44-57. DOI: 10.16088/j.issn.1001-6600.2021030801. [17] LIU K H, GUAN X J, LI C M, et al. Globalperspectives and future research directions for the phytoremediation of heavy metal-contaminated soil: a knowledge mapping analysis from 2001 to 2020[J]. Frontiers of Environmental Science & Engineering, 2022, 16(6):73. DOI: 10.1007/s11783-021-1507-2. [18] 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253. DOI: 10.16192/j.cnki.1003-2053.2015.02.009. [19] LIU K H, GUAN X J, LI G L, et al. Publication characteristics, topic trends and knowledge domains of karst ecological restoration: a bibliometric and knowledge mapping analysis from 1991 to 2021[J]. Plant and Soil, 2022,475(1): 169-187. DOI: 10.1007/s11104-022-05345-0. [20] JAFFRÉ T, BROOKS R R, LEE J, et al. Sebertia acuminata: a hyperaccumulator of nickel from new Caledonia[J]. Science, 1976, 193(4253): 579-580. DOI: 10.1126/science.193.4253.579. [21] SALT D E, SMITH R D, RASKIN I. Phytoremediation[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49(1): 643-668. [22] BROWN S L, CHANEY R L, ANGLE J S, et al. Phytoremediation potential of Thlaspi caerulescens and Bladder Campion for zinc-and cadmium-contaminated soil[J]. Journal of Environmental Quality, 1994,23(6):1151-1157. DOI: 10.2134/jeq1994.00472425002300060004x. [23] SCHLEGEL H G, COSSON J P, BAKER A J M. Nickel-hyperaccumulating plants provide a niche for nickel-resistant bacteria[J]. Botanica Acta, 1991,104(1):18-25. DOI: 10.1111/j.1438-8677.1991.tb00189.x. [24] STOPPEL R, SCHLEGEL H G. Nickel-resistant bacteria from anthropogenically nickel-polluted and naturally nickel-percolated ecosystems[J]. Applied Environmental Microbiology, 1995, 61(6): 2276-2285. DOI: 10.1128/aem.61.6.2276-2285.1995. [25] GABBRIELLI R L, MATTIONI C, VERGNANO O. Accumulation mechanisms and heavy metal tolerance of a nickel hyperaccumulator[J]. Journal of Plant Nutrition, 1991, 14(10): 1067-1080. DOI: 10.1080/01904169109364266. [26] NOBLE A D, HUGHES J C. Sequential fractionation of chromium and nickel from some serpentinite-derived soils from the eastern Transvaal[J]. Communications in Soil Science and Plant Analysis, 1991, 22(19/20): 1963-1973. DOI: 10.1080/00103629109368550. [27] REEVES R D, BAKER A J M, BORHIDI A, et al. Nickel-accumulating plants from the ancient serpentine soils of Cuba[J]. New Phytologist, 1996, 133(2): 217-224. DOI: 10.1111/j.1469-8137.1996.tb01888.x. [28] BAKER A J M, REEVES R D, HAJER A S M. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. and C. Presl (Brassicaceae)[J]. The New phytologist, 1994, 127(1): 61-68. [29] BERNAL M P, MCGRATH S P, MILLER A J, et al. Comparison of the chemical changes in the rhizosphere of the nickel hyperaccumulator Alyssum murale with the non-accumulator Raphanus sativus[J]. Plant and Soil, 1994, 164(2): 251-259. DOI: 10.1007/BF00010077. [30] PEER W A, MAMOUDIAN M, LAHNER B, et al. Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area[J]. New Phytologist, 2003, 159(2): 421-430. DOI: 10.1046/j.1469-8137.2003.00822.x. [31] BECHER M, TALKE I N, KRALL L, et al. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri[J]. The Plant Journal, 2004, 37(2): 251-268. DOI: 10.1046/j.1365-313X.2003.01959.x. [32] JHEE E M, DANDRIDGE K L, CHRISTY A M, et al. Selective herbivory on low-zinc phenotypes of the hyperaccumulator Thlaspi caerulescens (Brassicaceae)[J]. Chemoecology, 1999, 9(2): 93-95. DOI: 10.1007/s000490050038. [33] MA L Q, KOMAR K M, TU C, et al. A fern that hyperaccumulates arsenic[J]. Nature, 2001, 409(6820): 579-579. DOI: 10.1038/35054664. [34] FAYIGA A O, MA L Q. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata[J]. Science of the Total Environment, 2006, 359(1/2/3): 17-25. DOI: 10.1016/j.scitotenv.2005.06.001. [35] LASAT M M, BAKER A J, KOCHIAN L V. Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens[J]. Plant Physiology, 1998, 118(3): 875-883. DOI: 10.1104/pp.118.3.875. [36] PENCE N S, LARSEN P B, EBBS S D, et al. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(9): 4956-4960. DOI: 10.1073/pnas.97.9.4956. [37] EBBS S D, KOCHIAN L V. Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea)[J]. Environmental Science & Technology, 1998, 32(6): 802-806. DOI: 10.1021/es970698p. [38] CRIST R H, MARTIN J R, CRIST D R. Ion-exchange aspects of toxic metal uptake by Indian mustard[J]. International Journal of Phytoremediation, 2004, 6(1): 85-94. DOI: 10.1080/16226510490440006. [39] LIM J M, SALIDO A L, BUTCHER D J. Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics[J]. Microchemical Journal, 2004, 76(1/2): 3-9. DOI: 10.1016/j.microc.2003.10.002. [40] PASTERNAK M, LIM B, WIRTZ M, et al. Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development[J]. The Plant Journal, 2008, 53(6): 999-1012. DOI: 10.1111/j.1365-313X.2007.03389.x. [41] JIN X F, YANG X E, MAHMOOD Q, et al. Response of antioxidant enzymes,ascorbate and glutathione metabolism towards cadmium in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii H.[J]. Environmental Toxicology, 2008, 23(4): 517-529. DOI: 10.1002/tox.20362. [42] COSIO C, DESANTIS L, FREY B, et al. Distribution of cadmium in leaves of Thlaspi caerulescens[J]. Journal of Experimental Botany, 2005, 56(412): 765-775. DOI: 10.1093/jxb/eri062. [43] DIWAN H, AHMAD A, IQBAL M. Uptake-related parameters as indices of phytoremediation potential[J].Biologia, 2010, 65(6): 1004-1011. DOI: 10.2478/s11756-010-0106-7. [44] GOMES M P, MARQUES R Z, NASCENTES C C, et al. Synergistic effects between arbuscular mycorrhizal fungi and rhizobium isolated from As-contaminated soils on the As-phytoremediation capacity of the tropical woody legume Anadenanthera peregrina[J]. International Journal of Phytoremediation, 2020, 22(13): 1362-1371. DOI: 10.1080/15226514.2020.1775548. [45] PINEAU C, LOUBET S, LEFOULON C, et al. Natural variation at the FRD3 MATE transporter locus revealscross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana[J]. PLoS Genet, 2012, 8(12): e1003120. DOI: 10.1371/journal.pgen.1003120. [46] ZEMANOVÁ V, PAVLÍK M, PAVLÍKOVÁ D, et al. The significance of methionine, histidine and tryptophan in plant responses and adaptation to cadmium stress[J]. Plant, Soil and Environment, 2014, 60(9): 426-432. DOI: 10.17221/544/2014-PSE. [47] PRZEDPEŁSKA-WASOWICZ E, POLATAJKO A, WIERZBICKA M. The influence of cadmium stress on the content of mineral nutrients and metal-binding proteins in Arabidopsis halleri[J]. Water, Air, & Soil Pollution, 2012, 223(8): 5445-5458. DOI: 10.1007/s11270-012-1292-4. [48] MARTÍNEZ-ALCALÁ I, CLEMENTE R, BERNAL M P. Interactions between the hyperaccumulator Noccaea caerulescens and Brassica juncea or Lupinus albus for phytoextraction[J]. Agronomy, 2020, 10(9): 1367. DOI: 10.3390/agronomy10091367. [49] LEIGH BROADHURST C, TAPPERO R V, MAUGEL T K, et al. Interaction of nickel and manganese in accumulation and localization in leaves of the Ni hyperaccumulators Alyssum murale and Alyssum corsicum[J]. Plant and Soil, 2009, 314(1): 35-48. DOI: 10.1007/s11104-008-9703-4. [50] NKRUMAH P N, ECHEVARRIA G, ERSKINE P D, et al. Growth effects in tropical nickel-agromining ‘metal crops’ in response to nutrient dosing[J]. Journal of Plant Nutrition and Soil Science, 2019, 182(5): 715-728. DOI: 10.1002/jpln.201800468. [51] PARDO T, RODRÍGUEZ-GARRIDO B, SAAD R F, et al. Assessing the agromining potential of Mediterranean nickel-hyperaccumulating plant species at field-scale in ultramafic soils under humid-temperate climate[J]. Science of the Total Environment, 2018, 630: 275-286. DOI: 10.1016/j.scitotenv.2018.02.229. [52] KIDD P S, BANI A, BENIZRI E, et al. Developing sustainableagromining systems in agricultural ultramafic soils for nickel recovery[J]. Frontiers in Environmental Science, 2018, 6: 44. DOI: 10.3389/fenvs.2018.00044. [53] NKRUMAH P N, TISSERAND R, CHANEY R L, et al. The first tropical ‘metal farm’: some perspectives from field and pot experiments[J]. Journal of Geochemical Exploration, 2019, 198: 114-122. DOI: 10.1016/j.gexplo.2018.12.003. [54] 段桂兰, 王利红, 陈玉, 等. 植物超富集砷机制研究的最新进展[J]. 环境科学学报, 2007, 27(5): 714-720. DOI: 10.3321/j.issn:0253-2468.2007.05.002. [55] WANG H B, WONG M H, LAN C Y, et al. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China[J]. Environmental Pollution, 2007, 145(1): 225-233. DOI: 10.1016/j.envpol.2006.03.015. [56] WANG H B, YE Z H, SHU W S, et al. Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of southern China: field surveys[J]. International Journal of Phytoremediation, 2006, 8(1): 1-11. DOI: 10.1080/16226510500214517. [57] 陈焱山, 贾梦茹, 曹越, 等. 蜈蚣草砷富集的分子机制研究进展[J]. 农业环境科学学报, 2018, 37(7): 1402-1408. DOI: 10.11654/jaes.2018-0563. [58] 李熠, 陈熹, 肖丕显, 等. 中国镉超富集植物种类组成及分布特征研究[J]. 中国野生植物资源, 2020, 39(6): 11-16. DOI: 10.3969/j.issn.1006-9690.2020.06.003. [59] ZHANG S R, LIN H C, DENG L J, et al. Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L.[J]. Ecological Engineering, 2013, 51: 133-139. DOI: 10.1016/j.ecoleng.2012.12.080. [60] 刘周莉, 何兴元, 陈玮. 忍冬:一种新发现的镉超富集植物[J]. 生态环境学报, 2013, 22(4): 666-670. DOI: 10.3969/j.issn.1674-5906.2013.04.020. [61] LIU K H, ZHOU Z M, YU F M, et al. A newly found cadmium hyperaccumulator:Centella asiatica Linn.[J]. Fresenius Environmental Bulletin, 2016, 25(9): 3815-3822. [62] GUO H, JIANG J W, GAO J Q, et al. Evaluation of cadmium hyperaccumulation and tolerance potential of Myriophyllum aquaticum[J]. Ecotoxicology and Environmental Safety, 2020, 195: 110502. DOI: 10.1016/j.ecoenv.2020.110502. [63] YANG G L, ZHENG M M, TAN A J, et al. Research on the mechanisms of plant enrichment and detoxification of cadmium[J]. Biology, 2021, 10(6): 544. DOI: 10.3390/biology10060544. [64] RAZA A, HABIB M, KAKAVAND S N, et al. Phytoremediation of cadmium: physiological, biochemical, and molecular mechanisms[J]. Biology, 2020, 9(7): 177. DOI: 10.3390/biology9070177. [65] 于方明, 余秋平, 刘可慧, 等. 肠杆菌 FM-1 强化积雪草修复镉污染土壤机理[J]. 中国环境科学, 2018, 38(12): 4625-4630. DOI: 10.3969/j.issn.1000-6923.2018.12.029. [66] LI Y, LIU K H, WANG Y, et al. Improvement of cadmium phytoremediation by Centella asiatica L. after soil inoculation with cadmium-resistant Enterobacter sp. FM-1[J]. Chemosphere, 2018, 202: 280-288. DOI: 10.1016/j.chemosphere.2018.03.097. [67] FREEMAN J L, TAMAOKI M, STUSHNOFF C, et al. Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata[J]. Plant Physiology, 2010, 153(4): 1630-1652. DOI: 10.1104/pp.110.156570. [68] FREEMAN J L, MARCUS M A, FAKRA S C, et al. Selenium hyperaccumulator plants Stanleya pinnata and Astragalus bisulcatus are colonized by Se-resistant, Se-excluding wasp and beetle seed herbivores[J]. PLoS One, 2012, 7(12): e50516. DOI: 10.1371/journal.pone.0050516. [69] CHEN C M, HU Z G, LIU S B, et al. Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace[J]. Expert Opinion on Biological Therapy, 2012, 12(5): 593-608. DOI: 10.1517/14712598.2012.674507. [70] 张小丽, 陈泽柠, 武正军. 蜥蜴与气候变化的研究热点演变分析:基于Web of Science数据库[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 332-341. DOI: 10.16088/j.issn.1001-6600.2021100911. [71] BAKER A J M, BROOKS R R. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989, 1(2): 81-126. [72] BROOKS R R, MORRISON R S, REEVES R D, et al. Hyperaccumulation of nickel by Alyssum linnaeus (Cruciferae)[J]. Proceedings of the Royal Society of London: Series B Biological Sciences, 1979, 203(1153): 387-403. DOI: 10.1098/rspb.1979.0005. [73] KRÄMER U, COTTER-HOWELLS J D, CHARNOCK J M, et al. Free histidine as a metal chelator in plants that accumulate nickel[J]. Nature, 1996, 379(6566): 635-638. DOI: 10.1038/379635a0. [74] KRÄMER U. Metal hyperaccumulation in plants[J]. Annual Review of Plant Biology, 2010, 61: 517-534. DOI: 10.1146/annurev-arplant-042809-112156. [75] VAN DER ENT A, BAKER A J M, REEVES R D, et al. Hyperaccumulators of metal and metalloid trace elements: facts and fiction[J]. Plant and Soil, 2013, 362(1): 319-334. DOI: 10.1007/s11104-012-1287-3. [76] LOMBI E, ZHAO F J, FUHRMANN M, et al. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata[J]. New Phytologist, 2002, 156(2): 195-203. DOI: 10.1046/j.1469-8137.2002.00512.x. [77] CORSO M, AN X H, JONES C Y, et al. Adaptation of Arabidopsis halleri to extreme metal pollution through limited metal accumulation involves changes in cell wall composition and metal homeostasis[J]. New Phytologist, 2021, 230(2): 669-682. DOI: 10.1111/nph.17173. [78] BABST-KOSTECKA A, SCHAT H, SAUMITOU-LAPRADE P, et al. Evolutionary dynamics of quantitative variation in an adaptive trait at the regional scale: the case of zinc hyperaccumulation in Arabidopsis halleri[J]. Molecular Ecology, 2018, 27(16): 3257-3273. DOI: 10.1111/mec.14800. [79] MEYER C L, JURANIEC M, HUGUET S, et al. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri[J]. Journal of Experimental Botany, 2015, 66(11): 3215-3227. DOI: 10.1093/jxb/erv144. [80] DIETRICH C C, TANDY S, MURAWSKA-WLODARCZYK K, et al. Phytoextraction efficiency of Arabidopsis halleri is driven by the plant and not by soil metal concentration[J]. Chemosphere, 2021, 285: 131437. DOI: 10.1016/j.chemosphere.2021.131437. [81] 陈春强, 邓华, 陈小梅. 广西3个锰矿恢复区农作物重金属健康风险评价[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 127-135. DOI: 10.16088/j.issn.1001-6600.2017.04.018. [82] HE S Y, YANG X E, HE Z L, et al. Morphological and physiological responses of plants to cadmium toxicity: a review[J]. Pedosphere, 2017, 27(3): 421-438. DOI: 10.1016/S1002-0160(17)60339-4. [83] GONNEAU C, NORET N, GODÉ C, et al. Demographic history of the trace metal hyperaccumulator Noccaea caerulescens (J. Presl and C. Presl) F. K. Mey. in western Europe[J]. Molecular Ecology, 2017, 26(3): 904-922. DOI: 10.1111/mec.13942. [84] STOPLE C, KRÄMER U, MÜLLER C. Heavy metal (hyper)accumulation in leaves of Arabidopsis halleri is accompanied by a reduced performance of herbivores and shifts in leaf glucosinolate and element concentrations[J]. Environmental and Experimental Botany, 2017, 133: 78-86. DOI: 10.1016/j.envexpbot.2016.10.003. [85] MALECKA A, KONKOLEWSKA A, HANC′ A, et al. Insight into the phytoremediation capability of Brassica juncea (v. Malopolska): metal accumulation and antioxidant enzyme activity[J]. International Journal of Molecular Sciences, 2019, 20(18): 4355. DOI: 10.3390/ijms20184355. [86] FARID M, ALI S, ZUBAIR M, et al. Glutamic acid assisted phyto-management of silver-contaminated soils through sunflower; physiological and biochemical response[J]. Environmental Science and Pollution Research International, 2018, 25(25): 25390-25400. DOI: 10.1007/s11356-018-2508-y. [87] LOPEZ S, GOUX X, VAN DER ENT A, et al. Bacterial community diversity in the rhizosphere of nickel hyperaccumulator species of Halmahera Island (Indonesia)[J]. Applied Soil Ecology, 2019, 133:70-80. DOI: 10.1016/j.apsoil.2018.09.007. [88] GUARINO F, CONTE B, IMPROTA G, et al. Genetic characterization, micropropagation, and potential use for arsenic phytoremediation of Dittrichia viscosa (L.) Greuter[J]. Ecotoxicology and Environmental Safety, 2018, 148: 675-683. DOI: 10.1016/j.ecoenv.2017.11.010. [89] NARAYANAN M, NATARAJAN D, KANDASAMY G, et al. Phytoremediation competence of short-term crops on magnesite mine tailing[J]. Chemosphere, 2021, 270: 128641. DOI: 10.1016/j.chemosphere.2020.128641. |
[1] | ZHANG Xiaoli, CHEN Zening, WU Zhengjun. Analysis of the Evolution of Research Hotspots on Lizards and Climate Change: Based on the Web of Science Database [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 332-341. |
[2] | TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22-34. |
[3] | GUAN Xiaojin, ZHAO Keyi, LIU Shiling, LI Yi, YU Fangming, LI Chunming, LIU Kehui. Global Trends and Hot Topics in the Field of Manganese Phytoremediation over the Past Three Decades: A Review Based on Citespace Visualization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 44-57. |
[4] | PENG Limei, ZHAO Li, ZHOU Wu, HU Yueming. Risk Assessment of Heavy Metals in Cultivated Land in Conghua District of Guangzhou City, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 118-129. |
[5] | XU Tingting, YU Qiuping, QI Peiyi, LIU Kehui, LI Yi, JIANG Yongrong, YU Fangming. Effects of Different Washing Solutions on the Desorption of Heavy Metals from a Lead-zinc Mine Soil [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 188-193. |
[6] | ZHENG Haixia, WANG Yue, CHEN Fen, GOU Chaoyang, ZHENG Qingrong. Pollution Characteristics and Potential Ecological Risk Assessmentof Soil Heavy Metal in the South Top of Wutai Mountain, Shanxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 99-107. |
[7] | LIAO Yuan-xiu, ZHOU Sheng-ming, QIN Shao-hua. The Internet of Things with Knowledge Service Functionality [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 42-47. |
[8] | ZHANG Jun, LI Dao-hong, DU Dian-song. Enrichment of Heavy Metals in Diestrammena from Longjing Cave and Bailong Cave of Guizhou,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 104-109. |
[9] | DENG Hua, XU Dan-dan, LI Ming-shun, LI Jin-cheng. Comparison of Different Digestion Methods in Analyzing Heavy Metals Content in Soils [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 80-83. |
|