Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 300-306.doi: 10.16088/j.issn.1001-6600.2022031008

Previous Articles     Next Articles

Stimulus-Responsive Nanozymes and Their in Situ Catalytic Enhancement of Tumor Therapy

LIANG Jiawei1,2,3, SUN Wanying1,2,3, LUO-LIU Ruiqi1,2,3, JIANG Bangping1,2,3, SHEN Xingcan1,2,3*   

  1. 1. School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin Guangxi, 541004, China;
    2. Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Ministry of Education of China, Guilin Guangxi 541004, China;
    3. State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources(Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2022-03-10 Revised:2022-04-20 Online:2022-09-25 Published:2022-10-18

Abstract: Nanozyme is a kind of nanomaterial with enzyme-like catalytic activity. Tumor microenvironment has its own unique biochemical characteristics, and this review summarizes that stimulating responsive nanozyme in tumor microenvironment can promote ROS production to enhance chemodynamic therapy in situ, by regulating acidity, increasing H2O2 concentration, changing glucose metabolism, eliminating antioxidants. Based on this, the research progress of nanozyme catalytic therapy synergistic photodynamic therapy, photothermal therapy, sonodynamic therapy, radiotherapy and immunotherapy were further reviewed.

Key words: nanozyme, cascade catalytic reaction, stimulus response mechanism, catalytic treatment, tumor treatment, immunotherapy

CLC Number: 

  • TB383.1
[1]ZHANG S P, CHEN H, WANG L P, et al. A general approach to design dual ratiometric fluorescent and photoacoustic probes for quantitatively visualizing tumor hypoxia levels in vivo[J]. Angewandte Chemie International Edition, 2022, 61(7): e202107076. DOI: 10.1002/anie.202107076.
[2]JIANG B P, ZHANG L, GUO X L, et al. Poly(N-phenylglycine)-based nanoparticles as highly effective and targeted near-infrared photothermal therapy/photodynamic therapeutic agents for malignant melanoma[J]. Small, 2017, 13(8): 1602496. DOI: 10.1002/smll.201602496.
[3]RUAN C P, LIU C J, HU H L, et al. NIR-II light-modulated thermosensitive hydrogel for light-triggered cisplatin release and repeatable chemo-photothermal therapy[J]. Chemical Science 2019, 10(17): 4699-4706. DOI: 10.1039/c9sc00375d.
[4]ZHANG R F, YAN X Y, FAN K L. Nanozymes inspired by natural enzymes[J]. Accounts of Materials Research, 2021, 2(7): 534-547. DOI: 10.1021/accountsmr.1c00074.
[5]AI Y J, HU Z N, LIANG X P, et al. Recent advances in nanozymes: from matters to bioapplications[J]. Advanced Functional Materials,2022,32(14): 2110432. DOI: 10.1002/adfm.202110432.
[6]PERILLO B, DI DONATO M, PEZONE A, et al. ROS in cancer therapy: the bright side of the moon[J]. Experimental and Molecular Medicine, 2020, 52(2): 192-203. DOI: 10.1038/s12276-020-0384-2.
[7]ZHANG C, BU W B, NI D L, et al. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction[J]. Angewandte Chemie International Edition, 2016, 55(6): 2101-2106. DOI: 10.1002/anie.201510031.
[8]韩雅静,汪凤林,蒋健晖. 化学动力学治疗在癌症治疗中的应用研究进展[J]分析化学,2021, 49(7): 1121-1132. DOI: 10.19756/j.issn.0253-3820.201734.
[9]TIAN Q W, XUE F F, WANG Y R, et al. Recent advances in enhanced chemodynamic therapy strategies[J]. Nano Today, 2021, 39: 101162. DOI: 10.1016/j.nantod.2021.101162.
[10]CHEN J J, ZHU Y F, WU C T, et al. Nanoplatform-based cascade engineering for cancer therapy[J]. Chemical Society Reviews, 2020, 49(24): 9057-9094. DOI: 10.1039/d0cs00607f.
[11]FU L W, ZHOU X J, HE C L. Polymeric nanosystems for immunogenic cell death-based cancer immunotherapy[J]. Macromolecular Bioscience, 2021, 21(7): 2100075. DOI: 10.1002/mabi.202100075.
[12]MA J, QIU J J, WANG S R. Nanozymes for catalytic cancer immunotherapy[J]. ACS Applied Nano Materials, 2020, 3(6): 4925-4943. DOI: 10.1021/acsanm.0c00396.
[13]ZHOU Y F, FAN S Y, FENG L L, et al. Manipulating intratumoral Fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy[J]. Advanced Materials, 2021, 33(48): e2104223, DOI: 10.1002/adma.202104223.
[14]LIN T S, ZHANG Q, YUAN A, et al. Synergy of tumor microenvironment remodeling and autophagy inhibition to sensitize radiation for bladder cancer treatment[J]. Theranostics, 2020, 10(17): 7683-7696. DOI: 10.7150/thno.45358.
[15]SUN L, XU Y R, GAO Y, et al. Synergistic amplification of oxidative stress-mediated antitumor activity via liposomal dichloroacetic acid and MOF-Fe2+[J]. Small, 2019, 15(24): 1901156. DOI: 10.1002/smll.201901156.
[16]FU L H, QI C, LIN J, et al. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment[J]. Chemical Society Reviews, 2018, 47(17): 6454-6472. DOI: 10.1039/C7CS00891K.
[17]CHENG Y, DAI J, SUN C L, et al. An intracellular H2O2-responsive AIEgen for the peroxidase-mediated selective imaging and inhibition of inflammatory cells[J]. Angewandte Chemie International Edition, 2018, 57(12): 3123-3127. DOI: 10.1002/anie.201712803.
[18]XIONG H, WANG C, WANG Z H, et al. Self-assembled nano-activator constructed ferroptosis-immunotherapy through hijacking endogenous iron to intracellular positive feedback loop[J]. Journal of Controlled Release, 2021, 332: 539-552. DOI: 10.1016/j.jconrel.2021.03.007.
[19]HUO M F, WANG L Y, CHEN Y, et al. Tumor-selective catalytic nanomedicine by nanocatalyst delivery[J]. Nature Communications, 2017, 8(1): 357. DOI: 10.1038/s41467-017-00424-8.
[20]FU L H, WAN Y L, QI C, et al. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy[J]. Advanced Materials, 2021, 33(7): 2006892. DOI: 10.1002/adma.202006892.
[21]ZHANG H J, LIANG X, HAN L, et al. “Non-naked” gold with glucose oxidase-like activity: a nanozyme for tandem catalysis[J]. Small, 2018, 14(44): 1803256. DOI: 10.1002/smll.201803256.
[22]ZHENG N N, FU Y, LIU X J, et al. Tumor microenvironment responsive self-cascade catalysis for synergistic chemo/chemodynamic therapy by multifunctional biomimetic nanozymes[J]. Journal of Materials Chemistry B, 2022, 10(4): 637-645. DOI: 10.1039/d1tb01891d.
[23]DONG S M, DONG Y S, LIU B, et al. Guiding transition metal-doped hollow cerium tandem nanozymes with elaborately regulated multi-enzymatic activities for intensive chemodynamic therapy[J]. Advanced Materials, 2022, 34(7): 2107054. DOI: 10.1002/adma.202107054.
[24]LIU B, BIAN Y L, LIANG S, et al. One-step integration of tumor microenvironment-responsive calcium and copper peroxides nanocomposite for enhanced chemodynamic/ion-interference therapy[J]. ACS Nano, 2022, 16(1): 617-630. DOI: 10.1021/acsnano.1c07893.
[25]WANG X W, ZHONG X Y, LIU Z, et al. Recent progress of chemodynamic therapy-induced combination cancer therapy[J]. Nano Today, 2020, 35: 100946. DOI: 10.1016/j.nantod.2020.100946.
[26]HE Y L, JIN X Y, GUO S W, et al. et al. Conjugated polymer-ferrocence nanoparticle as an NIR-II light powered nanoamplifier to enhance chemodynamic therapy[J]. ACS Applied Materials and Interfaces, 2021, 13(27): 31452-31461. DOI: 10.1021/acsami.1c06613.
[27]LIN L S, HUANG T, SONG J B, et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy[J]. Journal of the American Chemical Society, 2019, 141(25): 9937-9945. DOI: 10.1021/jacs.9b03457.
[28]WU F, DU Y Q, YANG J N, et al. Peroxidase-like active nanomedicine with dual glutathione depletion property to restore oxaliplatin chemosensitivity and promote programmed cell death[J]. ACS Nano, 2022, 16(3), 3647-3663. DOI: 10.1021/acsnano.1c06777.
[29]SANG Y J, CAO F F, LI W, et al. Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy[J]. Journal of the American Chemical Society, 2020, 142(11): 5177-5183. DOI: 10.1021/jacs.9b12873.
[30]LIU G Y, ZHU J W, GUO H, et al. Mo2C-derived polyoxometalate for NIR-II photoacoustic imaging-guided chemodynamic/photothermal synergistic therapy[J]. Angewandte Chemie International Edition, 2019, 58(51): 18641-18646. DOI: 10.1002/anie.201910815.
[31]WU M Q, DING Y M, LI L L, et al. Recent progress in the augmentation of reactive species with nanoplatforms for cancer therapy[J]. Nanoscale, 2019, 11(42): 19658-19683. DOI: 10.1039/c9nr06651a.
[32]SUN Q Q, WANG Z, LIU B,et al. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy[J]. Coordination Chemistry Reviews, 2022, 451: 214267. DOI: 10.1016/j.ccr.2021.214267.
[33]ESFAHANI K, ROUDAIA L, BUHLAIGA N, et al. A review of cancer immunotherapy: from the past, to the present, to the future[J]. Current Oncology, 2020, 27(S2): 87-97. DOI: 10.3747/co.27.5223.
[34]周俊,陈舒曼,邢兵,等. 正常来源CD4+ CD25+细胞在小鼠肺癌模型中的抗肿瘤作用[J].广西师范大学学报(自然科学版), 2022, 40(2): 191-199. DOI: 10.16088/j.issn.1001-6600.2021022202.
[35]CHEN T, HUANG R T, LIANG J W, et al. Natural polyphenol-vanadium oxide nanozymes for synergistic chemodynamic/photothermal therapy[J]. Chemistry-A European Journal, 2020, 26(66): 15159-15169. DOI: 10.1002/chem.202002335.
[36]LIU C H, CAO Y, CHENG Y R, et al. An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy[J]. Nature Communications, 2020, 11(1): 1735. DOI: 10.1038/s41467-020-15591-4.
[37]SONG G S, CHENG L, CHAO Y, et al. Emerging nanotechnology and advanced materials for cancer radiation therapy[J]. Advanced Materials, 2017, 29(32): 1700996. DOI: 10.1002/adma.201700996.
[38]CHEN M Z, WANG Z Q, SUO W L, et al. Injectable hydrogel for synergetic low dose radiotherapy, chemodynamic therapy and photothermal therapy[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 757428. DOI: 10.3389/fbioe.2021.757428.
[39]LIANG S, DENG X R, MA P A, et al. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy[J]. Advancer Materials, 2020, 32 (47): 2003214. DOI: 10.1002/adma.202003214.
[40]WANG Z, LIU B, SUN Q Q, et al. Upconverted metal-organic framework janus architecture for near-infrared and ultrasound co-enhanced high performance tumor therapy[J]. ACS Nano, 2021, 15(7): 12342-12357. DOI: 10.1021/acsnano.1c04280.
[41]DUAN X P, CHAN C, LIN W B, et al. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy[J]. Angewandte Chemie International Edition, 2019, 58(3): 670-680. DOI: 10.1002/anie.201804882.
[42]YIN Y F, JIANG X W, SUN L P, et al. Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma[J]. Nano Today, 2021, 36: 101009. DOI: 10.1016/j.nantod.2020.101009.
[43]DENG H Z, ZHOU Z J, YANG W J, et al. Endoplasmic reticulum targeting to amplify immunogenic cell death for cancer immunotherapy[J]. Nano Letters, 2020, 20(3): 1928-1933. DOI: 10.1021/acs.nanolett.9b05210.
[44]HUANG J, YANG B, PENG Y, et al. Nanomedicine-boosting tumor immunogenicity for enhanced immunotherapy[J]. Advanced Functional Materials, 2021, 31(21): 2011171. DOI: 10.1002/adfm.202011171.
[45]LV W J, CAO M Z, LIU J J, et al. Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia[J]. Acta Biomaterialia, 2021, 135: 617-627. DOI: 10.1016/j.actbio.2021.08.015.
[46]HUANG R T, DING Z Y, JIANG B P, et al. Artificial metalloprotein nanoanalogues: in situ catalytic production of oxygen to enhance photoimmunotherapeutic inhibition of primary and abscopal tumor growth[J]. Small, 2020, 16(46): 2004345. DOI: 10.1002/smll.202004345.
[47]TANG G H, HE J Y, LIU J W, et al. Nanozyme for tumor therapy: surface modification matters[J]. Exploration, 2021, 1(1): 75-89. DOI: 10.1002/EXP.20210005.
[48]WILHELM S, TAVARES A J, DAI Q,et al. Analysis of nanoparticle delivery to tumours[J]. Nature Reviews Materials, 2016, 1: 16014.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[2] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[3] TIE Jun, LONG Juanjuan, ZHENG Lu, NIU Yue, SONG Yanlin. Tomato Leaf Disease Recognition Model Based on SK-EfficientNet[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 104 -114 .
[4] WENG Ye, SHAO Desheng, GAN Shu. Principal Component Liu Estimation Method of the Equation    Constrained Ⅲ-Conditioned Least Squares[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 115 -125 .
[5] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[6] HE Qing, LIU Jian, WEI Lianfu. Single-Photon Detectors as the Physical Limit Detections of Weak Electromagnetic Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 1 -23 .
[7] TIAN Ruiqian, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, JIANG Pinqun, CAI Chaobo. Research Progress of Successive Approximation Register Analog-to-Digital Converter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 24 -35 .
[8] ZHANG Shichao, LI Jiaye. Knowledge Matrix Representation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 36 -48 .
[9] LIANG Yuting, LUO Yuling, ZHANG Shunsheng. Review on Chaotic Image Encryption Based on Compressed Sensing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 49 -58 .
[10] HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59 -71 .