Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 286-299.doi: 10.16088/j.issn.1001-6600.2021122303
Previous Articles Next Articles
LIU Hui1,2,3, LI Li1,2,3, LIU Yanghan1,2,3, CHEN Zhenfeng1,2,3*
CLC Number:
[1]VAN FURTH R, COHN Z A. The origin and kinetics of mononuclear phagocytes[J]. Journal of Experimental Medicine, 1968, 128(3): 415-435. [2]VAN FURTH R, COHN Z A, HIRSCH J G, et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells[J]. Bulletin of the World Health Organisation, 1972, 46(6): 845-852. [3]GINHOUX F, GRETER M, LEBOEUF M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages[J]. Science, 2010, 330(6005): 841-845. [4]DAVIES L C, JENKINS S J, ALLEN J E, et al. Tissue-resident macrophages[J]. Nature Immunology, 2013, 14(10):986-995. [5]MANTOVANI A, SICA A, SOZZANI S, et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunology, 2004, 25: 677-686. [6]DULUC D, DELNESTE Y, TAN F, et al. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells[J]. Blood, 2007, 110: 4319-4330. [7]CHENG H Y, WANG Z C, FU L, et al. Macrophage polarization in the development and progression of ovarian cancers: an overview[J]. Frontiers in Oncology, 2019, 9: 421. [8]POH A R, ERNST M. Targeting macrophages in cancer: from bench to bedside[J]. Frontiers in Oncology, 2018, 8: 49. [9]XUE J, SCHMIDT S V, SANDER J, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation[J]. Immunity, 2014, 40(2): 274-288. [10]QIAN B Z, POLLARD J W. Macrophage diversity enhances tumor progression and metastasis[J]. Cell, 2010, 141(1): 39-51. [11]LAOUI D, VAN OVERMEIRE E, MOVAHEDI K, et al. Mononuclear phagocyte heterogeneity in cancer: different subsets and activation states reaching out at the tumor site[J]. Immunobiology, 2011, 216(11): 1192-1202. [12]SCHOUPPE E, DE BAETSELIER P, VAN GINDERACHTER J A, et al. Instruction of myeloid cells by the tumor microenvironment: open questions on the dynamics and plasticity of different tumor-associated myeloid cell populations[J]. Oncoimmunology, 2012, 1(7): 1135-1145. [13]WU T, DAI Y. Tumor microenvironment and therapeutic response[J]. Cancer Letters, 2017, 387: 61-68. [14]VASILJEVA O, PAPAZOGLOU A, KRÜGER A, et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer[J]. Cancer Research, 2006, 66(10): 5242-5250. [15]STEENBRUGGE J, BREYNE K, DEMEYERE K, et al. Anti-inflammatory signaling by mammary tumor cells mediates prometastatic macrophage polarization in an innovative intraductal mouse model for triple-negative breast cancer[J]. Journal of Experimental and Clinical Cancer Research, 2018, 37: 191. [16]WANG R, ZHANG J, CHEN S F, et al. Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression[J]. Lung Cancer, 2011, 74(2): 188-196. [17]WYCKOFF J B, WANG Y R, LIN E Y, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors[J]. Cancer Research, 2007, 67(6): 2649-2656. [18]FINKERNAGEL F, REINARTZ S, LIEBER S, et al. The transcriptional signature of human ovarian carcinoma macrophages is associated with extracellular matrix reorganization[J]. Oncotarget, 2016, 7(46): 75339-75352. [19]DENG Y R, LIU W B, LIAN Z X, et al. Sorafenib inhibits macrophage-mediated epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Oncotarget, 2016, 7(25): 38292-38305. [20]FOLKMAN J. What is the evidence that tumors are angiogenesis dependent?[J]. Journal of the National Cancer Institute, 1990, 82(1): 4-7. [21]BERGERS G, BENJAMIN L E. Tumorigenesis and the angiogenic switch[J]. Nature Reviews Cancer, 2003, 3(6): 401-410. [22]MURDOCH C, MUTHANA M, COFFELT S B, et al. The role of myeloid cells in the promotion of tumour angiogenesis[J]. Nature Reviews Cancer, 2008, 8(8): 618-631. [23]DIRKX A E M, OUDE EGBRINK M G A, WAGSTAFF J, et al. Monocyte/macrophage infiltration in tumors: modulators of angiogenesis[J]. Journal of Leukocyte Biology, 2006, 80(6): 1183-1196. [24]MAZZIERI R, PUCCI F, MOI D, et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells[J]. Cancer Cell, 2011, 19(4): 512-526. [25]KLOEPPER J, RIEDEMANN L, AMOOZGAR Z, et al. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival[J]. Proceedings of the National Academy of Sciences, 2016, 113(16): 4476-4481. [26]KUJAWSKI M, KORTYLEWSKI M, LEE H, et al. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice[J]. Journal of Clinical Investigation, 2008, 118(10): 3367-3377. [27]YEO E J, CASSETTA L, QIAN B Z, et al. Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer[J]. Cancer Research, 2014, 74(11): 2962-2973. [28]CHENG N, BAI X X, SHU Y X, et al. Targeting tumor-associated macrophages as an antitumor strategy[J]. Biochemical Pharmacology, 2021, 183: 114354. [29]CHEN Y B, SONG Y C, DU W, et al. Tumor-associated macrophages: an accomplice in solid tumor progression[J]. Journal of Biomedical Science, 2019, 26(1): 78. [30]KUANG D M, ZHAO Q Y, PENG C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1[J]. Journal of Experimental Medicine, 2009, 206(6): 1327-1337. [31]CHANG A L, MISKA J, WAINWRIGHT D A, et al. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells[J]. Cancer Research,2016, 76(19): 5671-5682. [32]KROEMER G, GALLUZZI L, KEPP O, et al. Immunogenic cell death in cancer therapy[J]. Annual Review of Immunology, 2013, 31(1): 51-72. [33]CORTESE N, CASTINO G F, DI CARO G, et al. Dual prognostic significance of tumor-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy[J]. Gut, 2016, 65(10): 1710-1720. [34]ANFRAY C, UMMARINO G F, ANDÓN F T, et al. Current strategies to target tumor-associated-macrophages to improve anti-tumor immune responses[J]. Cells, 2019, 9(1): 46. [35]CASTRO B A, FLANIGAN P, JAHANGIRI A, et al. Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy[J]. Oncogene, 2017, 36(26): 3749-3759. [36]DE GROOT J F, PIAO Y J, TRAN H, et al. Myeloid biomarkers associated with glioblastoma response to anti-VEGF therapy with aflibercept[J]. Clinical Cancer Research, 2011, 17(14): 4872-4881. [37]SHREE T, OlSON O C, ELIE B T, et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer[J]. Genes and Development, 2011, 25(23): 2465-2479. [38]OLSON O C, KIM H, QUAIL D F, et al. Tumor-associated macrophages suppress the cytotoxic activity of antimitotic agents[J]. Cell Reports, 2017, 19(1): 101-113. [39]NAKASONE E S, ASKAUTRUD H A, KEES T, et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance[J]. Cancer Cell, 2012, 21(4): 488-503. [40]ZHANG X, CHEN Y J, HAO L J, et al. Macrophages induce resistance to 5-fluorouracil chemotherapy in colorectal cancer through the release of putrescine[J]. Cancer Letters, 2016, 381(2): 305-313. [41]BINENBAUM Y, FRIDMAN E, YAARI Z, et al. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma[J]. Cancer Research, 2018, 78(18): 5287-5299. [42]LEBLOND M M, PÉRÈE E A, HELAINE C, et al. M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma[J]. Oncotarget, 2017, 8(42): 72597-72612. [43]TERESA P A, LARANJEIRO P M, PATRÍCIA C A, et al. Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities[J]. Scientific Reports, 2016, 6(1): 18765. [44]MENG Y R, BECKETT M A, LIANG H, et al. Blockade of tumor necrosis factor α signaling in tumor-associated macrophages as a radiosensitizing strategy[J]. Cancer Research, 2010, 70(4): 1534-1543. [45]KLUG F, PRAKASH H, HUBER P E, et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy[J]. Cancer Cell, 2013, 24(5): 589-602. [46]SHIAO S L, RUFFELL B, DENARDO D G, et al. TH2-Polarized CD4+ T cells and macrophages limit efficacy of radiotherapy[J]. Cancer Immunology Research, 2015, 3(5): 518-525. [47]XU J Y, ESCAMILLA J, MOK S, et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer[J]. Cancer Research, 2013, 73(9): 2782-2794. [48]ZHANG S Y, SONG X Y, LI Y, et al. Tumor-associated macrophages: a promising target for a cancer immunotherapeutic strategy[J]. Pharmacological Research, 2020, 161: 105111. [49]KITAMURA T, QIAN B Z, SOONG D, et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages[J]. Journal of Experimental Medicine, 2015, 212(7): 1043-1059. [50]PIENTA K J, MACHIELS J P, SCHRIJVERS D, et al. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer[J]. Investigational New Drugs, 2013, 31(3): 760-768. [51]BRANA I, CALLES A, LORUSSO P M, et al. Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study[J]. Targeted Oncology, 2015, 10(1): 111-123. [52]BONAPACE L, COISSIEUX M M, WYCKOFF J, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis[J]. Nature, 2014, 515(7525): 130-133. [53]ZOLLO M, DI DATO V, SPANO D, et al. Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models[J]. Clinical and Experimental Metastasis, 2012, 29(6): 585-601. [54]WANG H G, YUNG M M H, NGAN H Y S, et al. The impact of the tumor microenvironment on macrophage polarization in cancer metastatic progression[J]. International Journal of Molecular Sciences, 2021, 22(12): 6560. [55]STRACHAN D C, RUFFELL B, OEI Y, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+T cells[J]. Oncoimmunology, 2014, 2(12): e26968. [56]PRADEL L P, OOI C H, ROMAGNOLI S, et al. Macrophage susceptibility to emactuzumab (RG7155) treatment[J]. Molecular Cancer Therapeutics, 2016, 15(12): 3077-3086. [57]LAMB Y N. Pexidartinib: first approval[J]. Drugs, 2019, 79(16): 1805-1812. [58]BENNER B, GOOD L, QUIROGA D, et al. Pexidartinib, a novel small molecule CSF-1R inhibitor in use for tenosynovial giant cell tumor: a systematic review of pre-clinical and clinical development[J]. Drug Design, Development and Therapy, 2020, 14: 1693-1704. [59]GUERRIERO J L. Macrophages: the road less traveled, changing anticancer therapy[J]. Trends in Molecular Medicine, 2018, 24(5): 472-489. [60]RIES C H, CANNARILE M A, HOVES S, et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy[J]. Cancer Cell, 2014, 25(6): 846-859. [61]WEIZMAN N, KRELIN Y, SHABTAY O A, et al. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase[J]. Oncogene, 2014, 33(29): 3812-3819. [62]BORGHESE C, CATTARUZZA L, PIVETTA E, et al. Gefitinib inhibits the cross-talk between mesenchymal stem cells and prostate cancer cells leading to tumor cell proliferation and inhibition of docetaxel activity[J]. Journal of Cellular Biochemistry, 2013, 114(5): 1135-1144. [63]ZHOU W Q, GUO S C, LIU M L, et al. Targeting CXCL12/CXCR4 axis in tumor immunotherapy[J]. Current Medicinal Chemistry, 2019, 26(17): 3026-3041. [64]LI X, BU W H, MENG L, et al. CXCL12/CXCR4 pathway orchestrates CSC-like properties by CAF recruited tumor associated macrophage in OSCC[J]. Experimental Cell Research, 2019, 378(2): 131-138. [65]MOTA J M, LEITE C A, SOUZA L E, et al. Post-sepsis state induces tumor-associated macrophage accumulation through CXCR4/CXCL12 and favors tumor progression in mice[J]. Cancer Immunology Research, 2016, 4(4): 312-322. [66]ZENG Y, LI B H, LIANG Y Y, et al. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment[J]. The FASEB Journal, 2019, 33(5): 6596-6608. [67]ISHIDA Y, KUNINAKA Y, YAMAMOTO Y, et al. Pivotal involvement of the CX3CL1-CX3CR1 axis for the recruitment of M2 tumor-associated macrophages in skin carcinogenesis[J]. Journal of Investigative Dermatology, 2020, 140(10): 1951-1961.e6. [68]HERRERO A B, MARTÍN C C, MARCO E, et al. Cross-talk between nucleotide excision and homologous recombination DNA repair pathways in the mechanism of action of antitumor trabectedin[J]. Cancer Research, 2006, 66(16): 8155-8162. [69]GERMANO G, FRAPOLLI R, BELGIOVINE C, et al. Role of macrophage targeting in the antitumor activity of trabectedin[J]. Cancer Cell, 2013, 23(2): 249-262. [70]DRAKE M T, CLARKE B L, KHOSLA S. Bisphosphonates: mechanism of action and role in clinical practice[J]. Mayo Clinic Proceedings, 2008, 83(9): 1032-1045. [71]COSCIA M, QUAGLINO E, IEZZI M, et al. Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway[J]. Journal of Cellular and Molecular Medicine, 2010, 14(12): 2803-2815. [72]JUNANKAR S, SHAY G, JURCZYLUK J, et al. Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer[J]. Cancer Discovery, 2015, 5(1): 35-42. [73]ROGERS T L, HOLEN I. Tumour macrophages as potential targets of bisphosphonates[J]. Journal of Translational Medicine, 2011, 9: 177. [74]ZEISBERGER S M, ODERMATT B, MARTY C, et al. Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach[J]. British Journal of Cancer, 2006, 95(3): 272-281. [75]PUCCI F, GARRIS C, LAI C P, et al. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions[J]. Science, 2016, 352(6282): 242-246. [76]OHNISHI K, KOMOHARA Y, SAITO Y, et al. CD169-positive macrophages in regional lymph nodes are associated with a favorable prognosis in patients with colorectal carcinoma[J]. Cancer Science, 2013, 104(9): 1237-1244. [77]SHIOTA T, MIYASATO Y, OHNISHI K, et al. The clinical significance of CD169-positive lymph node macrophage in patients with breast cancer[J]. PLoS One, 2016, 11(11): e0166680. [78]LIANG W, KUJAWSKI M, WU J, et al. Antitumor activity of targeting SRC kinases in endothelial and myeloid cell compartments of the tumor microenvironment[J]. Clinical Cancer Research, 2010, 16(3):924-935. [79]GALMBACHER K, HEISIG M, HOTZ C, et al. Shigella mediated depletion of macrophages in a murine breast cancer model is associated with tumor regression[J]. PLoS One, 2010, 5(3): e9572. [80]BAK S P, WALTERS J J, TAKEYA M, et al. Scavenger receptor-a-targeted leukocyte depletion inhibits peritoneal ovarian tumor progression[J]. Cancer Research, 2007, 67(10): 4783-4789. [81]SMAHEL M, DUSKOVA M, POLAKOVA I, et al. Enhancement of DNA vaccine potency against legumain[J]. Journal of Immunotherapy, 2014, 37(5): 293-303. [82]DENARDO D G, RUFFELL B. Macrophages as regulators of tumour immunity and immunotherapy[J]. Nature Reviews Immunology, 2019, 19(6): 369-382. [83]ELGUETA R, BENSON M J, DE VRIES V C, et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system[J]. Immunological Reviews, 2009, 229(1): 152-172. [84]BEATTTY G L, CHIOREAN E G, FISHMAN M P, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans[J]. Science, 2011, 331(6024): 1612-1616. [85]BYRD J C, KIPPS T J, FLINN I W, et al. Phase I study of the anti-CD40 humanized monoclonal antibody lucatumumab (HCD122) in relapsed chronic lymphocytic leukemia[J]. Leukemia and Lymphoma, 2012, 53(11): 2136-2142. [86]VONDERHEIDE R H, FLAHERTY K T, KHALIL M, et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody[J]. Journal of Clinical Oncology, 2007, 25(7): 876-883. [87]OFLAZOGLU E, STONE I J, BROWN L, et al. Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40[J]. British Journal of Cancer, 2009, 100(1): 113-117. [88]BEATTY G L, TORIGIAN D A, CHIOREAN E G, et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma[J]. Clinical Cancer Research, 2013, 19(22): 6286-6295. [89]PATRA M C, CHOI S. Recent progress in the development of toll-like receptor (TLR) antagonists[J]. Expert Opinion on Therapeutic Patents, 2016, 26(6): 719-730. [90]WANG D Q, JIANG W, ZHU F G, et al. Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy[J]. International Journal of Oncology, 2018,53(3): 1193-1203. [91]HUANG Z, YANG Y, JIANG Y C, et al. Anti-tumor immune responses of tumor-associated macrophages via toll-like receptor 4 triggered by cationic polymers[J]. Biomaterials, 2013, 34(3): 746-755. [92]SATO-KANEKO F, YAO S Y, AHMADI A, et al. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer[J]. JCI Insight, 2017, 2(18): 93397. [93]MULLINS S R, VASILAKOS J P, DESCHLER K, et al. Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies[J]. Journal for Immunotherapy of Cancer, 2019, 7(1): 244. [94]KANEDA M M, MESSER K S, RALAINIRINA N, et al. PI3Kγ is a molecular switch that controls immune suppression[J]. Nature, 2017, 542(7639): 124. [95]GUERRIERO J L, SOTAYO A, PONICHTERA H E, et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages[J]. Nature, 2017, 543(7645): 428-432. [96]YANG L, WANG F, WANG L P, et al. CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients[J]. Oncotarget, 2015, 6(12): 10592-10603. [97]ZANGANEH S, HUTTER G, SPITLER R, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues[J]. Nature Nanotechnology, 2016, 11(11): 986-994. [98]GARACI E, PICA F, SERAFINO A, et al. Thymosin α1 and cancer: action on immune effector and tumor target cells[J]. Annals of the New York Academy of Sciences, 2012, 1269(1): 26-33. [99]CHAN G C F, CHAN W K, SZE D M Y. The effects of β-glucan on human immune and cancer cells[J]. Journal of Hematology and Oncology, 2009, 2: 25. [100]ZHANG Q, LI Y N, MIAO C Y, et al. Anti-angiogenesis effect of Neferine via regulating autophagy and polarization of tumor-associated macrophages in high-grade serous ovarian carcinoma[J]. Cancer Letters, 2018, 432: 144-155. [101]TSUBOKI J, FUJIWARA Y, HORLAD H, et al. Onionin a inhibits ovarian cancer progression by suppressing cancer cell proliferation and the protumour function of macrophages[J]. Scientific Reports, 2016, 6: 29588. [102]KANG H G, ZHANG J, WANG B Z, et al. Puerarin inhibits M2 polarization and metastasis of tumor-associated macrophages from NSCLC xenograft model via inactivating MEK/ERK 1/2 pathway[J]. International Journal of Oncology, 2017, 50(2): 545-554. [103]ZANGANEH S, HUTTER G, SPITLER R, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues[J]. Nature Nanotechnology, 2016, 11: 986-994. [104]RODELL C B, ARLAUCKAS S P, CUCCARESE M F, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy[J]. Nature Biomedical Engineering, 2018, 2: 578-588. [105]CAO M, YAN H, HAN X, et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth[J]. Journal for Immunotherapy of Cancer, 2019, 7(1): 326. [106]HAN S, WANG W, WANG S, et al. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes[J]. Theranostics, 2021, 11(6): 2892-2916. [107]BAER C, SQUADRITO M L, LAOUI D, et al. Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity[J]. Nature Cell Biology, 2016, 18(7): 790-802. [108]MAJETI R, CHAO M P, ALIZADEH A A, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells[J]. Cell, 2009, 138(2): 286-299. [109]BARKAL A A, WEISKOPF K, KAO K S, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy[J]. Nature Immunology, 2018, 19(1): 76-84. [110]BARKAL A A, BREWER R E, MARKOVIC M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy[J]. Nature, 2019, 572(7769): 392-396. [111]BARCLAY A N, VAN DEN BERG T K. The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target[J]. Annual Review of Immunology, 2014, 32: 25-50. [112]WEISKOPF K. Cancer immunotherapy targeting the CD47/SIRPα axis[J]. European Journal of Cancer, 2017, 76: 100-109. [113]BRIERLEY C K, STAVES J, ROBERTS C, et al. The effects of monoclonal anti-CD47 on RBCs, compatibility testing, and transfusion requirements in refractory acute myeloid leukemia[J]. Transfusion, 2019, 59(7): 2248-2254. [114]SIKIC B I, LAKHANI N, PATNAIK A, et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers[J]. Journal of Clinical Oncology, 2019, 37(12): 946-953. [115]PETROVA P S, VILLER N N, WONG M, et al. TTI-621 (SIRPαFc): a CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding[J]. Clinical Cancer Research, 2017, 23(4): 1068-1079. [116]KO Y J, LEE J W, KIM H, et al. Versatile activatable vSIRPα-probe for cancer-targeted imaging and macrophage-mediated phagocytosis of cancer cells[J]. Journal of Controlled Release, 2020, 323: 376-386. [117]GORDON S R, MAUTE R L, DULKEN B W, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity[J]. Nature, 2017, 545(7655): 495-499. [118]BARKAL A A, BREWER R E, MARKOVIC M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy[J]. Nature, 2019, 572(7769): 392-396. [119]RPMANO E, KUSIO K M, FOUKAS P G, et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients[J]. Proceedings of the National Academy of Sciences, 2015, 112(19): 6140-6145. [120]KALBASI A, RIBAS A. Tumour-intrinsic resistance to immune checkpoint blockade[J]. Nature Reviews Immunology, 2020, 20(1): 25-39. [121]AUSTYN J M, GORDON S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage[J]. European Journal of Immunology, 1981, 11(10): 805-815. [122]BILZER M, ROGGEL F, GERBES A L. Role of Kupffer cells in host defense and liver disease[J]. Liver International, 2006, 26(10): 1175-1186. [123]IMAI K, TAKAOKA A. Comparing antibody and small-molecule therapies for cancer[J]. Nature Reviews Cancer, 2006, 6(9): 714-727. [124]XIA Y Q, RAO L, YAO H M, et al. Engineering macrophages for cancer immunotherapy and drug delivery[J]. Advanced Materials, 2020, 32(40): e2002054. [125]VILLANUEVA M T. Macrophages get a CAR[J]. Nature Reviews Cancer, 2020, 20(6): 300. [126]PAN K, FARRUKH H, CHITTEPU V C S R, et al. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy[J]. Journal of Experimental and Clinical Cancer Research, 2022, 41(1): 119. [127]KLICHINSKY M, RUELLA M, SHESTOVA O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy[J]. Nature Biotechnology, 2020, 38(8): 947-953. |
[1] | CHEN Ying, ZHOU Zuping, XING Bing, PU Shiming. Construction of the Slfn2 Knockout Cell Lines in Lewis Lung Carcinoma Model Based on CRISPR/Cas9 System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 173-179. |
[2] | ZHOU Jun, CHEN Shuman, XING Bing, CHEN Yajing, LI Yinling, HE Liu, ZHOU Zuping, PU Shiming. Antitumor Effect of Normal Mice Derived CD4+CD25+ Cells in Mice Lung Cancer Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 191-199. |
[3] | LI Yinling, ZHOU Jing, CHEN Ying, CHEN Qiaoyuan, LIN Wanhua. Study on the Abnormal Expression of Sdr9c7 Gene in Erythrocytes of Tumor-bearing Mice [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 147-153. |
[4] | MEI Han-bing, WANG Wei, YAO Xue, CHENG Lian-biao, HUANG Jin. Inhibitory Activity and Mechanism of Hsp90 Inhibitor Cynaroside Against Non-small Cell Lung Cancer in Vitro [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 91-97. |
[5] | HUO Qun, LIU Jie, CHEN Li, LIAO Wei-jia. Influence of Cut-off Value of AFP on Diagnosis of Hepatic Cancer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(3): 121-124. |
[6] | CHEN You-ying, ZHENG Zhi, KONG Xiang-zeng, ZHANG Sheng-yuan. Classification of Colon Cancer Data Based on Bayesian Classifier [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 187-191. |
|