Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 286-299.doi: 10.16088/j.issn.1001-6600.2021122303

Previous Articles     Next Articles

Advances in Targeted Therapy of Tumor-Associated Macrophages

LIU Hui1,2,3, LI Li1,2,3, LIU Yanghan1,2,3, CHEN Zhenfeng1,2,3*   

  1. 1. State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin Guangxi 541004, China;
    2. Collaborative Innovation Center for Guangxi Ethnic Medicine (Guangxi Normal University), Guilin Guangxi 541004, China;
    3. School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2021-12-23 Revised:2022-04-19 Online:2022-09-25 Published:2022-10-18

Abstract: Tumor-associated macrophages(TAMs) are the most widely infiltrating immune cells in the tumor microenvironment(TME). Clinically, the number of TAMs is closely related to the poor prognosis of many cancer patients. TAMs play an important role in various stages of tumor progression. A number of studies have demonstrated that reducing the density or effects of TAMs can inhibit the growth of tumors. As the relationship between TAMs and malignant tumors becomes more and more clear, TAMs has been regarded as a potential target for cancer therapy. This review summarizes the origin, classification, role in tumor growth about TAMs, and the therapeutic strategies of Targeting TAMs.

Key words: tumor-associated macrophages(TAMs), macrophages, cancer, tumor microenvironment(TME), therapeutic target, immunity

CLC Number: 

  • R730.5
[1]VAN FURTH R, COHN Z A. The origin and kinetics of mononuclear phagocytes[J]. Journal of Experimental Medicine, 1968, 128(3): 415-435.
[2]VAN FURTH R, COHN Z A, HIRSCH J G, et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells[J]. Bulletin of the World Health Organisation, 1972, 46(6): 845-852.
[3]GINHOUX F, GRETER M, LEBOEUF M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages[J]. Science, 2010, 330(6005): 841-845.
[4]DAVIES L C, JENKINS S J, ALLEN J E, et al. Tissue-resident macrophages[J]. Nature Immunology, 2013, 14(10):986-995.
[5]MANTOVANI A, SICA A, SOZZANI S, et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunology, 2004, 25: 677-686.
[6]DULUC D, DELNESTE Y, TAN F, et al. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells[J]. Blood, 2007, 110: 4319-4330.
[7]CHENG H Y, WANG Z C, FU L, et al. Macrophage polarization in the development and progression of ovarian cancers: an overview[J]. Frontiers in Oncology, 2019, 9: 421.
[8]POH A R, ERNST M. Targeting macrophages in cancer: from bench to bedside[J]. Frontiers in Oncology, 2018, 8: 49.
[9]XUE J, SCHMIDT S V, SANDER J, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation[J]. Immunity, 2014, 40(2): 274-288.
[10]QIAN B Z, POLLARD J W. Macrophage diversity enhances tumor progression and metastasis[J]. Cell, 2010, 141(1): 39-51.
[11]LAOUI D, VAN OVERMEIRE E, MOVAHEDI K, et al. Mononuclear phagocyte heterogeneity in cancer: different subsets and activation states reaching out at the tumor site[J]. Immunobiology, 2011, 216(11): 1192-1202.
[12]SCHOUPPE E, DE BAETSELIER P, VAN GINDERACHTER J A, et al. Instruction of myeloid cells by the tumor microenvironment: open questions on the dynamics and plasticity of different tumor-associated myeloid cell populations[J]. Oncoimmunology, 2012, 1(7): 1135-1145.
[13]WU T, DAI Y. Tumor microenvironment and therapeutic response[J]. Cancer Letters, 2017, 387: 61-68.
[14]VASILJEVA O, PAPAZOGLOU A, KRÜGER A, et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer[J]. Cancer Research, 2006, 66(10): 5242-5250.
[15]STEENBRUGGE J, BREYNE K, DEMEYERE K, et al. Anti-inflammatory signaling by mammary tumor cells mediates prometastatic macrophage polarization in an innovative intraductal mouse model for triple-negative breast cancer[J]. Journal of Experimental and Clinical Cancer Research, 2018, 37: 191.
[16]WANG R, ZHANG J, CHEN S F, et al. Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression[J]. Lung Cancer, 2011, 74(2): 188-196.
[17]WYCKOFF J B, WANG Y R, LIN E Y, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors[J]. Cancer Research, 2007, 67(6): 2649-2656.
[18]FINKERNAGEL F, REINARTZ S, LIEBER S, et al. The transcriptional signature of human ovarian carcinoma macrophages is associated with extracellular matrix reorganization[J]. Oncotarget, 2016, 7(46): 75339-75352.
[19]DENG Y R, LIU W B, LIAN Z X, et al. Sorafenib inhibits macrophage-mediated epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Oncotarget, 2016, 7(25): 38292-38305.
[20]FOLKMAN J. What is the evidence that tumors are angiogenesis dependent?[J]. Journal of the National Cancer Institute, 1990, 82(1): 4-7.
[21]BERGERS G, BENJAMIN L E. Tumorigenesis and the angiogenic switch[J]. Nature Reviews Cancer, 2003, 3(6): 401-410.
[22]MURDOCH C, MUTHANA M, COFFELT S B, et al. The role of myeloid cells in the promotion of tumour angiogenesis[J]. Nature Reviews Cancer, 2008, 8(8): 618-631.
[23]DIRKX A E M, OUDE EGBRINK M G A, WAGSTAFF J, et al. Monocyte/macrophage infiltration in tumors: modulators of angiogenesis[J]. Journal of Leukocyte Biology, 2006, 80(6): 1183-1196.
[24]MAZZIERI R, PUCCI F, MOI D, et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells[J]. Cancer Cell, 2011, 19(4): 512-526.
[25]KLOEPPER J, RIEDEMANN L, AMOOZGAR Z, et al. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival[J]. Proceedings of the National Academy of Sciences, 2016, 113(16): 4476-4481.
[26]KUJAWSKI M, KORTYLEWSKI M, LEE H, et al. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice[J]. Journal of Clinical Investigation, 2008, 118(10): 3367-3377.
[27]YEO E J, CASSETTA L, QIAN B Z, et al. Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer[J]. Cancer Research, 2014, 74(11): 2962-2973.
[28]CHENG N, BAI X X, SHU Y X, et al. Targeting tumor-associated macrophages as an antitumor strategy[J]. Biochemical Pharmacology, 2021, 183: 114354.
[29]CHEN Y B, SONG Y C, DU W, et al. Tumor-associated macrophages: an accomplice in solid tumor progression[J]. Journal of Biomedical Science, 2019, 26(1): 78.
[30]KUANG D M, ZHAO Q Y, PENG C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1[J]. Journal of Experimental Medicine, 2009, 206(6): 1327-1337.
[31]CHANG A L, MISKA J, WAINWRIGHT D A, et al. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells[J]. Cancer Research,2016, 76(19): 5671-5682.
[32]KROEMER G, GALLUZZI L, KEPP O, et al. Immunogenic cell death in cancer therapy[J]. Annual Review of Immunology, 2013, 31(1): 51-72.
[33]CORTESE N, CASTINO G F, DI CARO G, et al. Dual prognostic significance of tumor-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy[J]. Gut, 2016, 65(10): 1710-1720.
[34]ANFRAY C, UMMARINO G F, ANDÓN F T, et al. Current strategies to target tumor-associated-macrophages to improve anti-tumor immune responses[J]. Cells, 2019, 9(1): 46.
[35]CASTRO B A, FLANIGAN P, JAHANGIRI A, et al. Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy[J]. Oncogene, 2017, 36(26): 3749-3759.
[36]DE GROOT J F, PIAO Y J, TRAN H, et al. Myeloid biomarkers associated with glioblastoma response to anti-VEGF therapy with aflibercept[J]. Clinical Cancer Research, 2011, 17(14): 4872-4881.
[37]SHREE T, OlSON O C, ELIE B T, et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer[J]. Genes and Development, 2011, 25(23): 2465-2479.
[38]OLSON O C, KIM H, QUAIL D F, et al. Tumor-associated macrophages suppress the cytotoxic activity of antimitotic agents[J]. Cell Reports, 2017, 19(1): 101-113.
[39]NAKASONE E S, ASKAUTRUD H A, KEES T, et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance[J]. Cancer Cell, 2012, 21(4): 488-503.
[40]ZHANG X, CHEN Y J, HAO L J, et al. Macrophages induce resistance to 5-fluorouracil chemotherapy in colorectal cancer through the release of putrescine[J]. Cancer Letters, 2016, 381(2): 305-313.
[41]BINENBAUM Y, FRIDMAN E, YAARI Z, et al. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma[J]. Cancer Research, 2018, 78(18): 5287-5299.
[42]LEBLOND M M, PÉRÈE E A, HELAINE C, et al. M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma[J]. Oncotarget, 2017, 8(42): 72597-72612.
[43]TERESA P A, LARANJEIRO P M, PATRÍCIA C A, et al. Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities[J]. Scientific Reports, 2016, 6(1): 18765.
[44]MENG Y R, BECKETT M A, LIANG H, et al. Blockade of tumor necrosis factor α signaling in tumor-associated macrophages as a radiosensitizing strategy[J]. Cancer Research, 2010, 70(4): 1534-1543.
[45]KLUG F, PRAKASH H, HUBER P E, et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy[J]. Cancer Cell, 2013, 24(5): 589-602.
[46]SHIAO S L, RUFFELL B, DENARDO D G, et al. TH2-Polarized CD4+ T cells and macrophages limit efficacy of radiotherapy[J]. Cancer Immunology Research, 2015, 3(5): 518-525.
[47]XU J Y, ESCAMILLA J, MOK S, et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer[J]. Cancer Research, 2013, 73(9): 2782-2794.
[48]ZHANG S Y, SONG X Y, LI Y, et al. Tumor-associated macrophages: a promising target for a cancer immunotherapeutic strategy[J]. Pharmacological Research, 2020, 161: 105111.
[49]KITAMURA T, QIAN B Z, SOONG D, et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages[J]. Journal of Experimental Medicine, 2015, 212(7): 1043-1059.
[50]PIENTA K J, MACHIELS J P, SCHRIJVERS D, et al. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer[J]. Investigational New Drugs, 2013, 31(3): 760-768.
[51]BRANA I, CALLES A, LORUSSO P M, et al. Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study[J]. Targeted Oncology, 2015, 10(1): 111-123.
[52]BONAPACE L, COISSIEUX M M, WYCKOFF J, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis[J]. Nature, 2014, 515(7525): 130-133.
[53]ZOLLO M, DI DATO V, SPANO D, et al. Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models[J]. Clinical and Experimental Metastasis, 2012, 29(6): 585-601.
[54]WANG H G, YUNG M M H, NGAN H Y S, et al. The impact of the tumor microenvironment on macrophage polarization in cancer metastatic progression[J]. International Journal of Molecular Sciences, 2021, 22(12): 6560.
[55]STRACHAN D C, RUFFELL B, OEI Y, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+T cells[J]. Oncoimmunology, 2014, 2(12): e26968.
[56]PRADEL L P, OOI C H, ROMAGNOLI S, et al. Macrophage susceptibility to emactuzumab (RG7155) treatment[J]. Molecular Cancer Therapeutics, 2016, 15(12): 3077-3086.
[57]LAMB Y N. Pexidartinib: first approval[J]. Drugs, 2019, 79(16): 1805-1812.
[58]BENNER B, GOOD L, QUIROGA D, et al. Pexidartinib, a novel small molecule CSF-1R inhibitor in use for tenosynovial giant cell tumor: a systematic review of pre-clinical and clinical development[J]. Drug Design, Development and Therapy, 2020, 14: 1693-1704.
[59]GUERRIERO J L. Macrophages: the road less traveled, changing anticancer therapy[J]. Trends in Molecular Medicine, 2018, 24(5): 472-489.
[60]RIES C H, CANNARILE M A, HOVES S, et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy[J]. Cancer Cell, 2014, 25(6): 846-859.
[61]WEIZMAN N, KRELIN Y, SHABTAY O A, et al. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase[J]. Oncogene, 2014, 33(29): 3812-3819.
[62]BORGHESE C, CATTARUZZA L, PIVETTA E, et al. Gefitinib inhibits the cross-talk between mesenchymal stem cells and prostate cancer cells leading to tumor cell proliferation and inhibition of docetaxel activity[J]. Journal of Cellular Biochemistry, 2013, 114(5): 1135-1144.
[63]ZHOU W Q, GUO S C, LIU M L, et al. Targeting CXCL12/CXCR4 axis in tumor immunotherapy[J]. Current Medicinal Chemistry, 2019, 26(17): 3026-3041.
[64]LI X, BU W H, MENG L, et al. CXCL12/CXCR4 pathway orchestrates CSC-like properties by CAF recruited tumor associated macrophage in OSCC[J]. Experimental Cell Research, 2019, 378(2): 131-138.
[65]MOTA J M, LEITE C A, SOUZA L E, et al. Post-sepsis state induces tumor-associated macrophage accumulation through CXCR4/CXCL12 and favors tumor progression in mice[J]. Cancer Immunology Research, 2016, 4(4): 312-322.
[66]ZENG Y, LI B H, LIANG Y Y, et al. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment[J]. The FASEB Journal, 2019, 33(5): 6596-6608.
[67]ISHIDA Y, KUNINAKA Y, YAMAMOTO Y, et al. Pivotal involvement of the CX3CL1-CX3CR1 axis for the recruitment of M2 tumor-associated macrophages in skin carcinogenesis[J]. Journal of Investigative Dermatology, 2020, 140(10): 1951-1961.e6.
[68]HERRERO A B, MARTÍN C C, MARCO E, et al. Cross-talk between nucleotide excision and homologous recombination DNA repair pathways in the mechanism of action of antitumor trabectedin[J]. Cancer Research, 2006, 66(16): 8155-8162.
[69]GERMANO G, FRAPOLLI R, BELGIOVINE C, et al. Role of macrophage targeting in the antitumor activity of trabectedin[J]. Cancer Cell, 2013, 23(2): 249-262.
[70]DRAKE M T, CLARKE B L, KHOSLA S. Bisphosphonates: mechanism of action and role in clinical practice[J]. Mayo Clinic Proceedings, 2008, 83(9): 1032-1045.
[71]COSCIA M, QUAGLINO E, IEZZI M, et al. Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway[J]. Journal of Cellular and Molecular Medicine, 2010, 14(12): 2803-2815.
[72]JUNANKAR S, SHAY G, JURCZYLUK J, et al. Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer[J]. Cancer Discovery, 2015, 5(1): 35-42.
[73]ROGERS T L, HOLEN I. Tumour macrophages as potential targets of bisphosphonates[J]. Journal of Translational Medicine, 2011, 9: 177.
[74]ZEISBERGER S M, ODERMATT B, MARTY C, et al. Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach[J]. British Journal of Cancer, 2006, 95(3): 272-281.
[75]PUCCI F, GARRIS C, LAI C P, et al. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions[J]. Science, 2016, 352(6282): 242-246.
[76]OHNISHI K, KOMOHARA Y, SAITO Y, et al. CD169-positive macrophages in regional lymph nodes are associated with a favorable prognosis in patients with colorectal carcinoma[J]. Cancer Science, 2013, 104(9): 1237-1244.
[77]SHIOTA T, MIYASATO Y, OHNISHI K, et al. The clinical significance of CD169-positive lymph node macrophage in patients with breast cancer[J]. PLoS One, 2016, 11(11): e0166680.
[78]LIANG W, KUJAWSKI M, WU J, et al. Antitumor activity of targeting SRC kinases in endothelial and myeloid cell compartments of the tumor microenvironment[J]. Clinical Cancer Research, 2010, 16(3):924-935.
[79]GALMBACHER K, HEISIG M, HOTZ C, et al. Shigella mediated depletion of macrophages in a murine breast cancer model is associated with tumor regression[J]. PLoS One, 2010, 5(3): e9572.
[80]BAK S P, WALTERS J J, TAKEYA M, et al. Scavenger receptor-a-targeted leukocyte depletion inhibits peritoneal ovarian tumor progression[J]. Cancer Research, 2007, 67(10): 4783-4789.
[81]SMAHEL M, DUSKOVA M, POLAKOVA I, et al. Enhancement of DNA vaccine potency against legumain[J]. Journal of Immunotherapy, 2014, 37(5): 293-303.
[82]DENARDO D G, RUFFELL B. Macrophages as regulators of tumour immunity and immunotherapy[J]. Nature Reviews Immunology, 2019, 19(6): 369-382.
[83]ELGUETA R, BENSON M J, DE VRIES V C, et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system[J]. Immunological Reviews, 2009, 229(1): 152-172.
[84]BEATTTY G L, CHIOREAN E G, FISHMAN M P, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans[J]. Science, 2011, 331(6024): 1612-1616.
[85]BYRD J C, KIPPS T J, FLINN I W, et al. Phase I study of the anti-CD40 humanized monoclonal antibody lucatumumab (HCD122) in relapsed chronic lymphocytic leukemia[J]. Leukemia and Lymphoma, 2012, 53(11): 2136-2142.
[86]VONDERHEIDE R H, FLAHERTY K T, KHALIL M, et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody[J]. Journal of Clinical Oncology, 2007, 25(7): 876-883.
[87]OFLAZOGLU E, STONE I J, BROWN L, et al. Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40[J]. British Journal of Cancer, 2009, 100(1): 113-117.
[88]BEATTY G L, TORIGIAN D A, CHIOREAN E G, et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma[J]. Clinical Cancer Research, 2013, 19(22): 6286-6295.
[89]PATRA M C, CHOI S. Recent progress in the development of toll-like receptor (TLR) antagonists[J]. Expert Opinion on Therapeutic Patents, 2016, 26(6): 719-730.
[90]WANG D Q, JIANG W, ZHU F G, et al. Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy[J]. International Journal of Oncology, 2018,53(3): 1193-1203.
[91]HUANG Z, YANG Y, JIANG Y C, et al. Anti-tumor immune responses of tumor-associated macrophages via toll-like receptor 4 triggered by cationic polymers[J]. Biomaterials, 2013, 34(3): 746-755.
[92]SATO-KANEKO F, YAO S Y, AHMADI A, et al. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer[J]. JCI Insight, 2017, 2(18): 93397.
[93]MULLINS S R, VASILAKOS J P, DESCHLER K, et al. Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies[J]. Journal for Immunotherapy of Cancer, 2019, 7(1): 244.
[94]KANEDA M M, MESSER K S, RALAINIRINA N, et al. PI3Kγ is a molecular switch that controls immune suppression[J]. Nature, 2017, 542(7639): 124.
[95]GUERRIERO J L, SOTAYO A, PONICHTERA H E, et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages[J]. Nature, 2017, 543(7645): 428-432.
[96]YANG L, WANG F, WANG L P, et al. CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients[J]. Oncotarget, 2015, 6(12): 10592-10603.
[97]ZANGANEH S, HUTTER G, SPITLER R, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues[J]. Nature Nanotechnology, 2016, 11(11): 986-994.
[98]GARACI E, PICA F, SERAFINO A, et al. Thymosin α1 and cancer: action on immune effector and tumor target cells[J]. Annals of the New York Academy of Sciences, 2012, 1269(1): 26-33.
[99]CHAN G C F, CHAN W K, SZE D M Y. The effects of β-glucan on human immune and cancer cells[J]. Journal of Hematology and Oncology, 2009, 2: 25.
[100]ZHANG Q, LI Y N, MIAO C Y, et al. Anti-angiogenesis effect of Neferine via regulating autophagy and polarization of tumor-associated macrophages in high-grade serous ovarian carcinoma[J]. Cancer Letters, 2018, 432: 144-155.
[101]TSUBOKI J, FUJIWARA Y, HORLAD H, et al. Onionin a inhibits ovarian cancer progression by suppressing cancer cell proliferation and the protumour function of macrophages[J]. Scientific Reports, 2016, 6: 29588.
[102]KANG H G, ZHANG J, WANG B Z, et al. Puerarin inhibits M2 polarization and metastasis of tumor-associated macrophages from NSCLC xenograft model via inactivating MEK/ERK 1/2 pathway[J]. International Journal of Oncology, 2017, 50(2): 545-554.
[103]ZANGANEH S, HUTTER G, SPITLER R, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues[J]. Nature Nanotechnology, 2016, 11: 986-994.
[104]RODELL C B, ARLAUCKAS S P, CUCCARESE M F, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy[J]. Nature Biomedical Engineering, 2018, 2: 578-588.
[105]CAO M, YAN H, HAN X, et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth[J]. Journal for Immunotherapy of Cancer, 2019, 7(1): 326.
[106]HAN S, WANG W, WANG S, et al. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes[J]. Theranostics, 2021, 11(6): 2892-2916.
[107]BAER C, SQUADRITO M L, LAOUI D, et al. Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity[J]. Nature Cell Biology, 2016, 18(7): 790-802.
[108]MAJETI R, CHAO M P, ALIZADEH A A, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells[J]. Cell, 2009, 138(2): 286-299.
[109]BARKAL A A, WEISKOPF K, KAO K S, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy[J]. Nature Immunology, 2018, 19(1): 76-84.
[110]BARKAL A A, BREWER R E, MARKOVIC M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy[J]. Nature, 2019, 572(7769): 392-396.
[111]BARCLAY A N, VAN DEN BERG T K. The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target[J]. Annual Review of Immunology, 2014, 32: 25-50.
[112]WEISKOPF K. Cancer immunotherapy targeting the CD47/SIRPα axis[J]. European Journal of Cancer, 2017, 76: 100-109.
[113]BRIERLEY C K, STAVES J, ROBERTS C, et al. The effects of monoclonal anti-CD47 on RBCs, compatibility testing, and transfusion requirements in refractory acute myeloid leukemia[J]. Transfusion, 2019, 59(7): 2248-2254.
[114]SIKIC B I, LAKHANI N, PATNAIK A, et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers[J]. Journal of Clinical Oncology, 2019, 37(12): 946-953.
[115]PETROVA P S, VILLER N N, WONG M, et al. TTI-621 (SIRPαFc): a CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding[J]. Clinical Cancer Research, 2017, 23(4): 1068-1079.
[116]KO Y J, LEE J W, KIM H, et al. Versatile activatable vSIRPα-probe for cancer-targeted imaging and macrophage-mediated phagocytosis of cancer cells[J]. Journal of Controlled Release, 2020, 323: 376-386.
[117]GORDON S R, MAUTE R L, DULKEN B W, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity[J]. Nature, 2017, 545(7655): 495-499.
[118]BARKAL A A, BREWER R E, MARKOVIC M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy[J]. Nature, 2019, 572(7769): 392-396.
[119]RPMANO E, KUSIO K M, FOUKAS P G, et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients[J]. Proceedings of the National Academy of Sciences, 2015, 112(19): 6140-6145.
[120]KALBASI A, RIBAS A. Tumour-intrinsic resistance to immune checkpoint blockade[J]. Nature Reviews Immunology, 2020, 20(1): 25-39.
[121]AUSTYN J M, GORDON S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage[J]. European Journal of Immunology, 1981, 11(10): 805-815.
[122]BILZER M, ROGGEL F, GERBES A L. Role of Kupffer cells in host defense and liver disease[J]. Liver International, 2006, 26(10): 1175-1186.
[123]IMAI K, TAKAOKA A. Comparing antibody and small-molecule therapies for cancer[J]. Nature Reviews Cancer, 2006, 6(9): 714-727.
[124]XIA Y Q, RAO L, YAO H M, et al. Engineering macrophages for cancer immunotherapy and drug delivery[J]. Advanced Materials, 2020, 32(40): e2002054.
[125]VILLANUEVA M T. Macrophages get a CAR[J]. Nature Reviews Cancer, 2020, 20(6): 300.
[126]PAN K, FARRUKH H, CHITTEPU V C S R, et al. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy[J]. Journal of Experimental and Clinical Cancer Research, 2022, 41(1): 119.
[127]KLICHINSKY M, RUELLA M, SHESTOVA O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy[J]. Nature Biotechnology, 2020, 38(8): 947-953.
[1] CHEN Ying, ZHOU Zuping, XING Bing, PU Shiming. Construction of the Slfn2 Knockout Cell Lines in Lewis Lung Carcinoma Model Based on CRISPR/Cas9 System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 173-179.
[2] ZHOU Jun, CHEN Shuman, XING Bing, CHEN Yajing, LI Yinling, HE Liu, ZHOU Zuping, PU Shiming. Antitumor Effect of Normal Mice Derived CD4+CD25+ Cells in Mice Lung Cancer Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 191-199.
[3] LI Yinling, ZHOU Jing, CHEN Ying, CHEN Qiaoyuan, LIN Wanhua. Study on the Abnormal Expression of Sdr9c7 Gene in Erythrocytes of Tumor-bearing Mice [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 147-153.
[4] MEI Han-bing, WANG Wei, YAO Xue, CHENG Lian-biao, HUANG Jin. Inhibitory Activity and Mechanism of Hsp90 Inhibitor Cynaroside Against Non-small Cell Lung Cancer in Vitro [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 91-97.
[5] HUO Qun, LIU Jie, CHEN Li, LIAO Wei-jia. Influence of Cut-off Value of AFP on Diagnosis of Hepatic Cancer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(3): 121-124.
[6] CHEN You-ying, ZHENG Zhi, KONG Xiang-zeng, ZHANG Sheng-yuan. Classification of Colon Cancer Data Based on Bayesian Classifier [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 187-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[2] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[3] TIE Jun, LONG Juanjuan, ZHENG Lu, NIU Yue, SONG Yanlin. Tomato Leaf Disease Recognition Model Based on SK-EfficientNet[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 104 -114 .
[4] WENG Ye, SHAO Desheng, GAN Shu. Principal Component Liu Estimation Method of the Equation    Constrained Ⅲ-Conditioned Least Squares[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 115 -125 .
[5] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[6] HE Qing, LIU Jian, WEI Lianfu. Single-Photon Detectors as the Physical Limit Detections of Weak Electromagnetic Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 1 -23 .
[7] TIAN Ruiqian, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, JIANG Pinqun, CAI Chaobo. Research Progress of Successive Approximation Register Analog-to-Digital Converter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 24 -35 .
[8] ZHANG Shichao, LI Jiaye. Knowledge Matrix Representation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 36 -48 .
[9] LIANG Yuting, LUO Yuling, ZHANG Shunsheng. Review on Chaotic Image Encryption Based on Compressed Sensing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 49 -58 .
[10] HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59 -71 .