2025年04月21日 星期一

广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (1): 65-74.doi: 10.16088/j.issn.1001-6600.2024040801

• “生态保护与资源可持续利用”专辑 • 上一篇    下一篇

微塑料和镉复合胁迫对禾花鲤标准代谢的影响

程春醒1, 潘清1, 吴扬扬1, 韦金友1, 韦雨薇1, 田文斐2, 蒋骄云1*   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006;
    2.桂林医学院 生物技术学院,广西 桂林 541199
  • 收稿日期:2024-04-08 修回日期:2024-05-09 出版日期:2025-01-05 发布日期:2025-02-07
  • 通讯作者: 蒋骄云(1986—),男,广西桂林人,广西师范大学副教授,博士。E-mail:Jiangjy@mailbox.gxnu.edu.cn
  • 基金资助:
    广西重点研发计划项目(RZ2200004564);广西高校中青年教师基础能力提升项目(广西壮族自治区教育厅科学研究项目)

Combined Effects of Microplastics and Cadmium on Standard Metabolism of Cyprinus carpio var. Quanzhounensis

CHENG Chunxing1, PAN Qing1, WU Yangyang1, WEI Jinyou1, WEI Yuwei1, TIAN Wenfei2, JIANG Jiaoyun1*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. College of Biotechnology, Guilin Medical University, Guilin Guangxi 541004, China
  • Received:2024-04-08 Revised:2024-05-09 Online:2025-01-05 Published:2025-02-07

摘要: 近年来,微塑料(microplastics, MPs)与镉(Cd)对水生动物的联合毒性受到广泛关注。禾花鲤Cyprinus carpio var. Quanzhounensis是广西当地特色经济水产养殖品种之一。目前,有关MPs和Cd复合胁迫对禾花鲤的毒性效应相关研究鲜有报道。本研究以禾花鲤为研究对象,通过室内静水实验法,探究不同浓度(0.25、0.5、1.0和2.0 mg/L)Cd和MPs单独及复合胁迫对禾花鲤耗氧率、排氨率和氧氮比的影响。结果表明,Cd单独胁迫下,耗氧率随Cd浓度增加呈先上升后下降趋势,排氨率呈上升趋势;氧氮比随Cd浓度的增加不断下降,并且当胁迫浓度高于(包含)1.0 mg/L后,氧氮比小于7。MPs单独胁迫下,耗氧率、氧氮比呈下降趋势,当胁迫浓度超过0.5 mg/L后变化趋于平缓,当暴露浓度高于(包含)1.0 mg/L后,氧氮比小于7;排氨率则先上升,胁迫浓度超过0.5 mg/L后变化趋于平缓。复合胁迫下,耗氧率、排氨率和氧氮比的变化趋势均大于单独胁迫,表现出明显的协同效应。双因素方差分析显示,Cd与MPs的交互作用对耗氧率、排氨率和氧氮比均影响显著(P<0.05);二元回归分析显示,Cd对禾花鲤的影响大于MPs。综上所述,MPs与Cd单独和(或)复合胁迫都影响禾花鲤的标准代谢;复合胁迫下MPs和Cd具有明显的协同效应,并且Cd对禾花鲤的毒性效应强于MPs;随着暴露浓度的增加,氧氮比小于7,能量代谢底物转变为以蛋白质为主,不利于蛋白质合成,影响禾花鲤的正常生长和健康。

关键词: 禾花鲤, 微塑料, 镉, 耗氧率, 排氨率

Abstract: In recent years, microplastics (MPs) and cadmium (Cd) have attracted significant attention due to their combined toxic effects on aquatic organisms. Rice flower carp (Cyprinus carpio var. Quanzhounensis) is a characteristic local species in Quanzhou County, Guangxi, China. The effects of combined exposure to MPs and Cd on C. carpio remain unclear. The present study was performed to determine the individual (0.25, 0.5, 1.0, and 2.0 mg/L Cd or 0.25, 0.5, 1.0, and 2.0 mg/L MPs) and combined effects of MPs and Cd on the oxygen consumption rate (ηOC), ammonia excretion rate (ηAE), and O/N ratio (ηO/N) of C. carpio var. Quanzhounensis. The results showed that, under single Cd stress, the ηOC initially increased and then decreased with increasing Cd concentration, while ηAE increased, and the ηO/N continuously decreased with increasing Cd concentration. More importantly, the ηO/N was dropped below 7 when the Cd concentration exceeded 1.0 mg/L. Under single MPs stress, the ηOC and ηO/N showed a decreasing trend, which leveled off when the MPs concentration exceeded 0.5 mg/L; Similarly, the ηO/N was also dropped below 7 when the MPs concentration exceeded 1.0 mg/L; In addition, ηAE initially increased and then also exhibited a leveling-off trend when the MPs concentration exceeded 0.5 mg/L. Interestingly, compared with the single exposure groups, the change patterns of oxygen consumption rate, ammonia excretion rate and ηO/N in the co-exposure groups were similar, but with a significantly greater magnitude, indicating a synergistic effect of MPs and Cd on the standard metabolism of C. carpio. Two-way ANOVA showed that the interaction between Cd and MPs significantly affected ηOC, ηAE, and ηO/N (P>0.05). Moreover, binary logistic regression analysis revealed that Cd had a greater impact on C. carpio than that of MPs. Taken together, both single and combined MPs and Cd affect the standard metabolism of C. carpio; Synergistic toxic effects of MPs and Cd were observed in this study, and the toxicity of Cd was stronger than that of MPs on C. carpio; With increasing exposure concentration, the ηO/N less than 7, indicating that C. carpio may rely exclusively on proteins as an energy source, leading to diminished protein synthesis, which in turn hampers the increase in body weight and harmful to the health of C. carpio.

Key words: Cyprinus carpio var. Quanzhounensis, microplastics, cadmium, oxygen consumption rate, ammonia excretion rate

中图分类号:  X503.225;S917.4

[1] LEBRETON L C M, VAN DER ZWET J, DAMSTEEG J W, et al. River plastic emissions to the world's oceans[J]. Nature Communications, 2017, 8: 15611. DOI: 10.1038/ncomms15611.
[2] PLASTICS EUROPE. Plastics-The Facts 2020. An analysis of European latest plastic production, demand and waste data[R]. Association of Plastics Manufacturers, Brussels, Belgium, 2020.
[3] ALIMI O S, FARNER BUDARZ J, HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1704-1724. DOI: 10.1021/acs.est.7b05559.
[4] THOMPSON R C, MOORE C J, VOM SAAL F S, et al. Plastics, the environment and human health: current consensus and future trends[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1526): 2153-2166. DOI: 10.1098/rstb.2009.0053.
[5] SIPPS K, ARBUCKLE-KEIL G, CHANT R, et al. Pervasive occurrence of microplastics in Hudson-Raritan estuary zooplankton[J]. Science of the Total Environment, 2022, 817: 152812. DOI: 10.1016/j.scitotenv.2021.152812.
[6] ZHANG K N, LIANG J H, LIU T, et al. Abundance and characteristics of microplastics in shellfish from Jiaozhou Bay, China, China[J]. Journal of Oceanology and Limnology, 2022, 40(1): 163-172. DOI: 10.1007/s00343-021-0465-7.
[7] SABOROWSKI R, KOREZ Š, RIESBECK S, et al. Shrimp and microplastics: a case study with the Atlantic ditch shrimp Palaemon varians[J]. Ecotoxicology and Environmental Safety, 2022, 234: 113394. DOI: 10.1016/j.ecoenv.2022.113394.
[8] ZHANG L S, XIE Y S, ZHONG S, et al. Microplastics in freshwater and wild fishes from Lijiang River in Guangxi, southwest China[J]. Science of the Total Environment, 2021, 755(Pt 1): 142428. DOI: 10.1016/j.scitotenv.2020.142428.
[9] KINIGOPOULOU V, PASHALIDIS I, KALDERIS D, et al. Microplastics as carriers of inorganic and organic contaminants in the environment: a review of recent progress[J]. Journal of Molecular Liquids, 2022, 350: 118580. DOI: 10.1016/j.molliq.2022.118580.
[10] HU F W, SUN M, LI L, et al. Effects of environmental cadmium on cadmium accumulation, oxidative response, and microelements regulation in the liver and kidney of Hexagrammos otakii[J]. Journal of Ocean University of China, 2022, 21(2): 479-485. DOI: 10.1007/s11802-022-4969-3.
[11] CHENG C X, WU Y Y, YE Q Q, et al. Individual and combined effects of microplastics and cadmium on intestinal histology and microflora of Procypris merus[J]. Aquaculture Reports, 2023, 31: 101659. DOI: 10.1016/j.aqrep.2023.101659.
[12] JIANG Z C, GUO Z H, PENG C, et al. Heavy metals in soils around non-ferrous smelteries in China: status, health risks and control measures[J]. Environmental Pollution, 2021, 282: 117038. DOI: 10.1016/j.envpol.2021.117038.
[13] WEN Y B, LI W, YANG Z F, et al. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, southwestern China[J]. Environmental Pollution, 2020, 258: 113645. DOI: 10.1016/j.envpol.2019.113645.
[14] 李龑, 姜晓娜, 葛彦龙, 等. 温度对两种鲤耗氧率、排氨率及窒息点的影响[J]. 淡水渔业, 2023, 53(2): 61-68. DOI: 10.13721/j.cnki.dsyy.2023.02.004.
[15] FERRARI L, EISSA B L, SALIBIÁN A. Energy balance of juvenile Cyprinus carpio after a short-term exposure to sublethal water-borne cadmium[J]. Fish Physiology and Biochemistry, 2011, 37(4): 853-862. DOI: 10.1007/s10695-011-9483-2.
[16] WU Y Y, TIAN W F, CHENG C X, et al. Effects of cadmium exposure on metabolism, antioxidant defense, immune function, and the hepatopancreas transcriptome of Cipangopaludina cathayensis[J]. Ecotoxicology and Environmental Safety, 2023, 264: 115416. DOI: 10.1016/j.ecoenv.2023.115416.
[17] WEBB S, GAW S, MARSDEN I D, et al. Biomarker responses in New Zealand green-lipped mussels Perna canaliculus exposed to microplastics and triclosan[J]. Ecotoxicology and Environmental Safety, 2020, 20: 110871. DOI: 10.1016/j.ecoenv.2020.110871.
[18] ZHENG S W, WANG W X. Disturbing ion regulation and excretion in medaka (Oryzias melastigma) gills by microplastics: Insights from the gut-gill axis[J]. Science of the Total Environment, 2023, 857(Pt 2): 159353. DOI: 10.1016/j.scitotenv.2022.159353.
[19] 潘贤辉, 周康奇, 陈忠, 等. 基于线粒体D-loop区和COI基因序列研究2个禾花鲤群体和野生鲤群体的遗传多样性与系统进化关系[J]. 淡水渔业, 2019, 49(6): 33-40. DOI: 10.13721/j.cnki.dsyy.2019.06.006.
[20] 蒋经运, 钟永旺, 冯勇翔. 乡村振兴背景下促进全州禾花鱼养殖产业发展对策研究[J]. 中国水产, 2023(8): 75-78.
[21] 周康奇, 潘贤辉, 林勇, 等. 广西禾花鲤形态性状与体质量的关系分析[J]. 河南农业科学, 2020, 49(9): 159-165. DOI: 10.15933/j.cnki.1004-3268.2020.09.020.
[22] HUANG W, SONG B, LIANG J, et al. Microplastics and associated contaminants in the aquatic environment: a review on their ecotoxicological effects, trophic transfer, and potential impacts to human health[J]. Journal of Hazardous Materials, 2021, 405: 124187. DOI: 10.1016/j.jhazmat.2020.124187.
[23] LI Y, LI J Q, XUE S Y, et al. Effects of Cu, Zn and Cd on larval development and respiratory metabolism of pacific abalone (Haliotis discus hannai)[J]. Aquaculture Research, 2020, 51(10): 4255-4266. DOI: 10.1111/are.14768.
[24] LI J, XIE X J. Inconsistent responses of liver mitochondria metabolism and standard metabolism in Silurus Meridionalis when exposed to waterborne cadmium[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2018, 214: 17-22. DOI: 10.1016/j.cbpc.2018.08.003.
[25] CAO J W, XU R, WANG F H, et al. Polyethylene microplastics trigger cell apoptosis and inflammation via inducing oxidative stress and activation of the NLRP3 inflammasome in carp gills[J]. Fish & Shellfish Immunology, 2023, 132: 108470. DOI: 10.1016/j.fsi.2022.108470.
[26] HAN Y, SHI W, TANG Y, et al. Microplastics and bisphenol a hamper gonadal development of whiteleg shrimp (litopenaeus Vannamei) by interfering with metabolism and disrupting hormone regulation[J]. Science of the Total Environment, 2022, 810: 152354. DOI: 10.1016/j.scitotenv.2021.152354.
[27] SUI Y M, ZHANG T, YAO X Y, et al. Synthesized effects of medium-term exposure to seawater acidification and microplastics on the physiology and energy budget of the thick shell mussel Mytilus coruscus[J]. Environmental Pollution, 2022, 308: 119598. DOI: 10.1016/j.envpol.2022.119598.
[28] CHEN X, PENG L B, WANG D, et al. Combined effects of polystyrene microplastics and cadmium on oxidative stress, apoptosis, and Gh/igf axis in zebrafish early life stages[J]. Science of the Total Environment, 2022, 813: 152514. DOI: 10.1016/j.scitotenv.2021.152514.
[29] BANAEE M, SOLTANIAN S, SUREDA A, et al. Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio)[J]. Chemosphere, 2019, 236: 124335. DOI: 10.1016/j.chemosphere.2019.07.066.
[30] CLIFFORD III H C, BRICK R W. Nutritional physiology of the freshwater shrimp Macrobrachium rosenbergii (de Man)-I. Substrate metabolism in fasting juvenile shrimp[J]. Comparative Biochemistry and Physiology Part A: Physiology, 1983, 74(3): 561-568. DOI: 10.1016/0300-9629(83)90548-0.
[31] PRETTO A, LORO V L, MORSCH V M, et al. Alterations in carbohydrate and protein metabolism in silver catfish (Rhamdia quelen) exposed to cadmium[J]. Ecotoxicology and Environmental Safety, 2014, 100: 188-192. DOI: 10.1016/j.ecoenv.2013.11.004.
[32] DE SILVA N A L, MARSDEN I D, GAW S, et al. Physiological and biochemical responses of the estuarine pulmonate mud snail, Amphibola crenata, sub-chronically exposed to waterborne cadmium[J]. Aquatic Toxicology, 2023, 256: 106418. DOI: 10.1016/j.aquatox.2023.106418.
[33] ZHANG C S, LI F H, XIANG J H. Acute effects of cadmium and copper on survival, oxygen consumption, ammonia-N excretion, and metal accumulation in juvenile Exopalaemon carinicauda[J]. Ecotoxicology and Environmental Safety, 2014, 104: 209-214. DOI: 10.1016/j.ecoenv.2014.01.008.
[34] ZHANG C S, JIN Y, YU Y, et al. Cadmium-induced oxidative stress, metabolic dysfunction and metal bioaccumulation in adult palaemonid shrimp Palaemon macrodactylus (Rathbun, 1902)[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111591. DOI: 10.1016/j.ecoenv.2020.111591.
[35] WIDDOWS J. Physiological indexes of stress in Mytilus edulis[J]. Journal of the Marine Biological Association of the United Kingdom, 1978, 58: 125-142. DOI: 10.1017/S0025315400024450.
[36] CHANDURVELAN R, MARSDEN I D, GAW S, et al. Impairment of green-lipped mussel (Perna canaliculus) physiology by waterborne cadmium: relationship to tissue bioaccumulation and effect of exposure duration[J]. Aquatic Toxicology, 2012, 124-125: 114/124. DOI: 10.1016/j.aquatox.2012.07.013.
[1] 何依珊, 黄佳, 韦丽媛, 黎晓, 李怡静, 徐子琴, 陈喆. 硒浸种与叶面喷硒对水稻吸收转运镉的影响[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 48-57.
[2] 武霞, 许艺兰, 文露婷, 黄姻, 覃俊奇, 周康奇, 杜雪松, 陈忠, 潘贤辉, 宾石玉. 全州禾花鲤色素细胞组成、分布及色素含量观测[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 222-229.
[3] 刘俊琛, 黄浩然, 葛春玉, 王红强, 方岳平. 磷掺杂与MoS2光沉积共同促进CdS光催化产氢[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 445-456.
[4] 梁佳怡, 王泳森, 段敏, 李艺, 陈喆, 于方明, 刘可慧. 生物质炭对土壤有效态镉及植物镉吸收影响的整合分析[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 1-12.
[5] 邓华, 李秋燕, 周瑞爽, 庞舒月, 刘金玉, 康彩艳. 短毛蓼粉末对Cd(Ⅱ)和Cu(Ⅱ)的吸附研究[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 102-112.
[6] 冯修, 马楠楠, 职红涛, 韩双乔, 张翔. 重金属捕集剂UDTC对低浓度镉废水的处理研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 63-67.
[7] 石贵玉, 宜丽娜, 梁超红, 李明霞. 硒对镉胁迫下罗汉果组培苗生理生化特性的影响[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 60-64.
[8] 冯英梅, 曹建华, 彭辉. 镉对不同品种小白菜生长及其品质的影响[J]. 广西师范大学学报(自然科学版), 2010, 28(2): 112-116.
Viewed
Full text
29
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 29

  From Others local
  Times 4 25
  Rate 14% 86%

Abstract
42
Just accepted Online first Issue
0 0 42
  From Others local
  Times 39 3
  Rate 93% 7%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[2] 刘畅平, 宋树祥, 蒋品群, 岑明灿. 基于开关电容的差分无源N通道滤波器[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 52 -60 .
[3] 王淑颖, 卢宇翔, 董淑彤, 陈默, 康秉娅, 蒋长兰, 宿程远. 污水中抗生素抗性基因传播过程及控制技术研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 1 -15 .
[4] 钟俏, 陈生龙, 唐聪聪. 水凝胶技术在微藻采收中的应用:现状、挑战与发展分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 16 -29 .
[5] 翟思琪, 蔡文君, 朱苏, 李韩龙, 宋海亮, 杨小丽, 杨玉立. 汲取液溶质反向扩散与正渗透中膜污染的相互关系研究[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 30 -39 .
[6] 郑国权, 秦永丽, 汪晨祥, 葛仕佳, 闻倩敏, 蒋永荣. ABR硫酸盐还原体系分级沉淀酸性矿山废水中重金属及矿物形成[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 40 -52 .
[7] 刘洋, 张毅杰, 章延, 李玲, 孔祥铭, 李红. 饮用水处理中藻类混凝消除技术的现状与趋势——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 53 -66 .
[8] 田晟, 陈东. 基于深度强化学习的网联燃料电池混合动力汽车生态驾驶联合优化方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 67 -80 .
[9] 陈秀锋, 王成鑫, 赵凤阳, 杨凯, 谷可鑫. 改进DQN算法的单点交叉口信号控制方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 81 -88 .
[10] 李欣, 宁静. 基于时空特征融合的电力系统暂态稳定评估[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 89 -100 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发