|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (1): 65-74.doi: 10.16088/j.issn.1001-6600.2024040801
程春醒1, 潘清1, 吴扬扬1, 韦金友1, 韦雨薇1, 田文斐2, 蒋骄云1*
CHENG Chunxing1, PAN Qing1, WU Yangyang1, WEI Jinyou1, WEI Yuwei1, TIAN Wenfei2, JIANG Jiaoyun1*
摘要: 近年来,微塑料(microplastics, MPs)与镉(Cd)对水生动物的联合毒性受到广泛关注。禾花鲤Cyprinus carpio var. Quanzhounensis是广西当地特色经济水产养殖品种之一。目前,有关MPs和Cd复合胁迫对禾花鲤的毒性效应相关研究鲜有报道。本研究以禾花鲤为研究对象,通过室内静水实验法,探究不同浓度(0.25、0.5、1.0和2.0 mg/L)Cd和MPs单独及复合胁迫对禾花鲤耗氧率、排氨率和氧氮比的影响。结果表明,Cd单独胁迫下,耗氧率随Cd浓度增加呈先上升后下降趋势,排氨率呈上升趋势;氧氮比随Cd浓度的增加不断下降,并且当胁迫浓度高于(包含)1.0 mg/L后,氧氮比小于7。MPs单独胁迫下,耗氧率、氧氮比呈下降趋势,当胁迫浓度超过0.5 mg/L后变化趋于平缓,当暴露浓度高于(包含)1.0 mg/L后,氧氮比小于7;排氨率则先上升,胁迫浓度超过0.5 mg/L后变化趋于平缓。复合胁迫下,耗氧率、排氨率和氧氮比的变化趋势均大于单独胁迫,表现出明显的协同效应。双因素方差分析显示,Cd与MPs的交互作用对耗氧率、排氨率和氧氮比均影响显著(P<0.05);二元回归分析显示,Cd对禾花鲤的影响大于MPs。综上所述,MPs与Cd单独和(或)复合胁迫都影响禾花鲤的标准代谢;复合胁迫下MPs和Cd具有明显的协同效应,并且Cd对禾花鲤的毒性效应强于MPs;随着暴露浓度的增加,氧氮比小于7,能量代谢底物转变为以蛋白质为主,不利于蛋白质合成,影响禾花鲤的正常生长和健康。
中图分类号: X503.225;S917.4
[1] LEBRETON L C M, VAN DER ZWET J, DAMSTEEG J W, et al. River plastic emissions to the world's oceans[J]. Nature Communications, 2017, 8: 15611. DOI: 10.1038/ncomms15611. [2] PLASTICS EUROPE. Plastics-The Facts 2020. An analysis of European latest plastic production, demand and waste data[R]. Association of Plastics Manufacturers, Brussels, Belgium, 2020. [3] ALIMI O S, FARNER BUDARZ J, HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1704-1724. DOI: 10.1021/acs.est.7b05559. [4] THOMPSON R C, MOORE C J, VOM SAAL F S, et al. Plastics, the environment and human health: current consensus and future trends[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1526): 2153-2166. DOI: 10.1098/rstb.2009.0053. [5] SIPPS K, ARBUCKLE-KEIL G, CHANT R, et al. Pervasive occurrence of microplastics in Hudson-Raritan estuary zooplankton[J]. Science of the Total Environment, 2022, 817: 152812. DOI: 10.1016/j.scitotenv.2021.152812. [6] ZHANG K N, LIANG J H, LIU T, et al. Abundance and characteristics of microplastics in shellfish from Jiaozhou Bay, China, China[J]. Journal of Oceanology and Limnology, 2022, 40(1): 163-172. DOI: 10.1007/s00343-021-0465-7. [7] SABOROWSKI R, KOREZ Š, RIESBECK S, et al. Shrimp and microplastics: a case study with the Atlantic ditch shrimp Palaemon varians[J]. Ecotoxicology and Environmental Safety, 2022, 234: 113394. DOI: 10.1016/j.ecoenv.2022.113394. [8] ZHANG L S, XIE Y S, ZHONG S, et al. Microplastics in freshwater and wild fishes from Lijiang River in Guangxi, southwest China[J]. Science of the Total Environment, 2021, 755(Pt 1): 142428. DOI: 10.1016/j.scitotenv.2020.142428. [9] KINIGOPOULOU V, PASHALIDIS I, KALDERIS D, et al. Microplastics as carriers of inorganic and organic contaminants in the environment: a review of recent progress[J]. Journal of Molecular Liquids, 2022, 350: 118580. DOI: 10.1016/j.molliq.2022.118580. [10] HU F W, SUN M, LI L, et al. Effects of environmental cadmium on cadmium accumulation, oxidative response, and microelements regulation in the liver and kidney of Hexagrammos otakii[J]. Journal of Ocean University of China, 2022, 21(2): 479-485. DOI: 10.1007/s11802-022-4969-3. [11] CHENG C X, WU Y Y, YE Q Q, et al. Individual and combined effects of microplastics and cadmium on intestinal histology and microflora of Procypris merus[J]. Aquaculture Reports, 2023, 31: 101659. DOI: 10.1016/j.aqrep.2023.101659. [12] JIANG Z C, GUO Z H, PENG C, et al. Heavy metals in soils around non-ferrous smelteries in China: status, health risks and control measures[J]. Environmental Pollution, 2021, 282: 117038. DOI: 10.1016/j.envpol.2021.117038. [13] WEN Y B, LI W, YANG Z F, et al. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, southwestern China[J]. Environmental Pollution, 2020, 258: 113645. DOI: 10.1016/j.envpol.2019.113645. [14] 李龑, 姜晓娜, 葛彦龙, 等. 温度对两种鲤耗氧率、排氨率及窒息点的影响[J]. 淡水渔业, 2023, 53(2): 61-68. DOI: 10.13721/j.cnki.dsyy.2023.02.004. [15] FERRARI L, EISSA B L, SALIBIÁN A. Energy balance of juvenile Cyprinus carpio after a short-term exposure to sublethal water-borne cadmium[J]. Fish Physiology and Biochemistry, 2011, 37(4): 853-862. DOI: 10.1007/s10695-011-9483-2. [16] WU Y Y, TIAN W F, CHENG C X, et al. Effects of cadmium exposure on metabolism, antioxidant defense, immune function, and the hepatopancreas transcriptome of Cipangopaludina cathayensis[J]. Ecotoxicology and Environmental Safety, 2023, 264: 115416. DOI: 10.1016/j.ecoenv.2023.115416. [17] WEBB S, GAW S, MARSDEN I D, et al. Biomarker responses in New Zealand green-lipped mussels Perna canaliculus exposed to microplastics and triclosan[J]. Ecotoxicology and Environmental Safety, 2020, 20: 110871. DOI: 10.1016/j.ecoenv.2020.110871. [18] ZHENG S W, WANG W X. Disturbing ion regulation and excretion in medaka (Oryzias melastigma) gills by microplastics: Insights from the gut-gill axis[J]. Science of the Total Environment, 2023, 857(Pt 2): 159353. DOI: 10.1016/j.scitotenv.2022.159353. [19] 潘贤辉, 周康奇, 陈忠, 等. 基于线粒体D-loop区和COI基因序列研究2个禾花鲤群体和野生鲤群体的遗传多样性与系统进化关系[J]. 淡水渔业, 2019, 49(6): 33-40. DOI: 10.13721/j.cnki.dsyy.2019.06.006. [20] 蒋经运, 钟永旺, 冯勇翔. 乡村振兴背景下促进全州禾花鱼养殖产业发展对策研究[J]. 中国水产, 2023(8): 75-78. [21] 周康奇, 潘贤辉, 林勇, 等. 广西禾花鲤形态性状与体质量的关系分析[J]. 河南农业科学, 2020, 49(9): 159-165. DOI: 10.15933/j.cnki.1004-3268.2020.09.020. [22] HUANG W, SONG B, LIANG J, et al. Microplastics and associated contaminants in the aquatic environment: a review on their ecotoxicological effects, trophic transfer, and potential impacts to human health[J]. Journal of Hazardous Materials, 2021, 405: 124187. DOI: 10.1016/j.jhazmat.2020.124187. [23] LI Y, LI J Q, XUE S Y, et al. Effects of Cu, Zn and Cd on larval development and respiratory metabolism of pacific abalone (Haliotis discus hannai)[J]. Aquaculture Research, 2020, 51(10): 4255-4266. DOI: 10.1111/are.14768. [24] LI J, XIE X J. Inconsistent responses of liver mitochondria metabolism and standard metabolism in Silurus Meridionalis when exposed to waterborne cadmium[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2018, 214: 17-22. DOI: 10.1016/j.cbpc.2018.08.003. [25] CAO J W, XU R, WANG F H, et al. Polyethylene microplastics trigger cell apoptosis and inflammation via inducing oxidative stress and activation of the NLRP3 inflammasome in carp gills[J]. Fish & Shellfish Immunology, 2023, 132: 108470. DOI: 10.1016/j.fsi.2022.108470. [26] HAN Y, SHI W, TANG Y, et al. Microplastics and bisphenol a hamper gonadal development of whiteleg shrimp (litopenaeus Vannamei) by interfering with metabolism and disrupting hormone regulation[J]. Science of the Total Environment, 2022, 810: 152354. DOI: 10.1016/j.scitotenv.2021.152354. [27] SUI Y M, ZHANG T, YAO X Y, et al. Synthesized effects of medium-term exposure to seawater acidification and microplastics on the physiology and energy budget of the thick shell mussel Mytilus coruscus[J]. Environmental Pollution, 2022, 308: 119598. DOI: 10.1016/j.envpol.2022.119598. [28] CHEN X, PENG L B, WANG D, et al. Combined effects of polystyrene microplastics and cadmium on oxidative stress, apoptosis, and Gh/igf axis in zebrafish early life stages[J]. Science of the Total Environment, 2022, 813: 152514. DOI: 10.1016/j.scitotenv.2021.152514. [29] BANAEE M, SOLTANIAN S, SUREDA A, et al. Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio)[J]. Chemosphere, 2019, 236: 124335. DOI: 10.1016/j.chemosphere.2019.07.066. [30] CLIFFORD III H C, BRICK R W. Nutritional physiology of the freshwater shrimp Macrobrachium rosenbergii (de Man)-I. Substrate metabolism in fasting juvenile shrimp[J]. Comparative Biochemistry and Physiology Part A: Physiology, 1983, 74(3): 561-568. DOI: 10.1016/0300-9629(83)90548-0. [31] PRETTO A, LORO V L, MORSCH V M, et al. Alterations in carbohydrate and protein metabolism in silver catfish (Rhamdia quelen) exposed to cadmium[J]. Ecotoxicology and Environmental Safety, 2014, 100: 188-192. DOI: 10.1016/j.ecoenv.2013.11.004. [32] DE SILVA N A L, MARSDEN I D, GAW S, et al. Physiological and biochemical responses of the estuarine pulmonate mud snail, Amphibola crenata, sub-chronically exposed to waterborne cadmium[J]. Aquatic Toxicology, 2023, 256: 106418. DOI: 10.1016/j.aquatox.2023.106418. [33] ZHANG C S, LI F H, XIANG J H. Acute effects of cadmium and copper on survival, oxygen consumption, ammonia-N excretion, and metal accumulation in juvenile Exopalaemon carinicauda[J]. Ecotoxicology and Environmental Safety, 2014, 104: 209-214. DOI: 10.1016/j.ecoenv.2014.01.008. [34] ZHANG C S, JIN Y, YU Y, et al. Cadmium-induced oxidative stress, metabolic dysfunction and metal bioaccumulation in adult palaemonid shrimp Palaemon macrodactylus (Rathbun, 1902)[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111591. DOI: 10.1016/j.ecoenv.2020.111591. [35] WIDDOWS J. Physiological indexes of stress in Mytilus edulis[J]. Journal of the Marine Biological Association of the United Kingdom, 1978, 58: 125-142. DOI: 10.1017/S0025315400024450. [36] CHANDURVELAN R, MARSDEN I D, GAW S, et al. Impairment of green-lipped mussel (Perna canaliculus) physiology by waterborne cadmium: relationship to tissue bioaccumulation and effect of exposure duration[J]. Aquatic Toxicology, 2012, 124-125: 114/124. DOI: 10.1016/j.aquatox.2012.07.013. |
[1] | 何依珊, 黄佳, 韦丽媛, 黎晓, 李怡静, 徐子琴, 陈喆. 硒浸种与叶面喷硒对水稻吸收转运镉的影响[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 48-57. |
[2] | 武霞, 许艺兰, 文露婷, 黄姻, 覃俊奇, 周康奇, 杜雪松, 陈忠, 潘贤辉, 宾石玉. 全州禾花鲤色素细胞组成、分布及色素含量观测[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 222-229. |
[3] | 刘俊琛, 黄浩然, 葛春玉, 王红强, 方岳平. 磷掺杂与MoS2光沉积共同促进CdS光催化产氢[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 445-456. |
[4] | 梁佳怡, 王泳森, 段敏, 李艺, 陈喆, 于方明, 刘可慧. 生物质炭对土壤有效态镉及植物镉吸收影响的整合分析[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 1-12. |
[5] | 邓华, 李秋燕, 周瑞爽, 庞舒月, 刘金玉, 康彩艳. 短毛蓼粉末对Cd(Ⅱ)和Cu(Ⅱ)的吸附研究[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 102-112. |
[6] | 冯修, 马楠楠, 职红涛, 韩双乔, 张翔. 重金属捕集剂UDTC对低浓度镉废水的处理研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 63-67. |
[7] | 石贵玉, 宜丽娜, 梁超红, 李明霞. 硒对镉胁迫下罗汉果组培苗生理生化特性的影响[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 60-64. |
[8] | 冯英梅, 曹建华, 彭辉. 镉对不同品种小白菜生长及其品质的影响[J]. 广西师范大学学报(自然科学版), 2010, 28(2): 112-116. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 29
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 42
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |