广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (6): 1-12.doi: 10.16088/j.issn.1001-6600.2021030502

• 综述 •    下一篇

生物质炭对土壤有效态镉及植物镉吸收影响的整合分析

梁佳怡1,2†, 王泳森1,2†, 段敏1,2, 李艺1,3, 陈喆1,4, 于方明1,3*, 刘可慧1,2*   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学), 广西 桂林 541006;
    2.广西师范大学 生命科学学院, 广西 桂林 541006;
    3.广西师范大学 环境与资源学院, 广西 桂林 541006;
    4.广西环境污染控制理论与技术重点实验室(桂林理工大学), 广西 桂林 541006
  • 收稿日期:2021-03-05 修回日期:2021-04-18 出版日期:2021-11-25 发布日期:2021-12-08
  • 通讯作者: 于方明(1975—), 男(苗族), 湖南绥宁人, 广西师范大学教授, 博士。E-mail: fmyu1215@163.com;刘可慧(1976—), 女, 湖南邵阳人, 广西师范大学教授, 博士。E-mail: coffeeleave@126.com
  • 作者简介:† 这二位作者对本文的贡献相等。
  • 基金资助:
    国家自然科学基金(41661077); 广西自然科学基金(2018GXNSFBA138039); 广西高校中青年教师科研基础能力提升项目(2020KY02027)

Effects of Biochar on Soil Available Cadmium and Cadmium Uptake by Plants:A Meta Analysis

LIANG Jiayi1,2†, WANG Yongsen1,2†, DUAN Ming1,2, LI Yi1,3, CHEN Zhe1,4, YU Fangming1,3*, LIU Kehui1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    3. College of Environment and Resource, Guangxi Normal University, Guilin Guangxi 541006, China;
    4. Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology (Guilin University of Technology), Guilin Guangxi 541006, China
  • Received:2021-03-05 Revised:2021-04-18 Online:2021-11-25 Published:2021-12-08

摘要: 本文通过整合分析,收集整理了国内外84篇生物质炭与土壤有效态镉含量及植物镉吸收方面的文献,从土壤特性、生物质炭施用量、生物质炭原料及制备条件等方面,研究了生物质炭施用对土壤有效态镉含量及植物镉吸收的影响。结果表明,生物质炭能有效降低土壤有效态镉含量及植物对镉的吸收,且植物比土壤的响应更明显。与不施加生物质炭的对照组相比,壤质和黏质土壤中的有效态镉分别显著(P<0.05)降低了33.06%和17.00%,而在砂质土壤中的变化不显著,弱酸性(5.5<pH≤6.5)土壤对生物质炭的施用响应更显著,平均降低36.72%。生物质炭制备的合适原料、温度、时间及施用量分别为:生活垃圾类物质、大于等于600 ℃、大于等于3.5 h和3%左右。所得结果为镉污染土壤—植物系统中生物质炭的选择与应用提供参考依据。

关键词: 生物质炭, 镉污染土壤, 镉的有效性, 植物镉吸收, 整合分析, 土壤修复

Abstract: Soil cadmium (Cd) pollution is a worldwide environmental issue. Biochar which is commonly reported to reduce soil available Cd (SA-Cd) and Cd uptake by plants (Cd-UP) has become one of the hot topics in bioremediation field. In this paper, effects of biochar, including feedstock materials, application rates, production conditions (time, temperature and pH) as well as the target soil characteristics on SA-Cd and Cd-UP were analyzedby using the meta-analysis based on 84 related papers. The results showed that the application of biochar significantly (P<0.05) decreased the concentration of SA-Cd in loamy and clayey soils by 33.06% and 17.00%, respectively, while the effects were not significant (P>0.05) in sandy soils. The effects of biochar on SA-Cd and Cd-UP were more significant in weakly acidic soils (5.5

Key words: biochar, Cd contaminated soil, Cd availability, Cd uptake, meta-analysis, soil remediation

中图分类号: 

  • X53
[1] WEISSMANNOVÁ H D, PAVLOVSKÝ J. Indices of soil contamination by heavy metals—methodology of calculation for pollution assessment (minireview)[J]. Environmental Monitoring and Assessment, 2017, 189(12): 616. DOI:10.1007/s10661-017-6340-5.
[2] SUN M X, WANG T, XU X B, et al. Ecological risk assessment of soil cadmium in China’s coastal economic development zone: a meta-analysis[J]. Ecosystem Health and Sustainability, 2020, 6(1): 1733921. DOI:10.1080/20964129.2020.1733921.
[3] HU Y A, CHENG H F. Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region[J]. Environmental Science &Technology, 2013, 47(8): 3752-3760. DOI:10.1021/es304310k.
[4] QIAO D H, WANG G S, LI X S, et al. Pollution, sources and environmental risk assessment of heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit, Tibet, China[J]. Chemosphere, 2020, 248: 125988. DOI:10.1016/j.chemosphere.2020.125988.
[5] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 国土资源通讯, 2014(8): 26-29.
[6] HAJEB P, SLOTH J J, SHAKIBAZADEH S, et al. Toxic elements in food: occurrence, binding, and reduction approaches[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(4): 457-472. DOI:10.1111/1541-4337.12068.
[7] YANG X, LU K P, McGROUTHER K, et al. Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs[J]. Journal of Soils and Sediments, 2017, 17(3): 751-762. DOI:10.1007/s11368-015-1326-9.
[8] 黄连喜, 魏岚, 刘晓文, 等. 生物炭对土壤—植物体系中铅镉迁移累积的影响[J]. 农业环境科学学报, 2020, 39(10): 2205-2216. DOI:10.11654/jaes.2020-0740.
[9] QIU Z, TANG J W, CHEN J H, et al. Remediation of cadmium-contaminated soil with biochar simultaneously improves biochar’s recalcitrance[J]. Environmental Pollution, 2020, 256: 113436. DOI:10.1016/j.envpol.2019.113436.
[10] ZIA UR REHMAN M, RIZWAN M, ALI S, et al. Cadmium (Cd) concentration in wheat (Triticum aestivum) grown in Cd-spiked soil varies with the doses and biochar feedstock[J]. Arabian Journal of Geosciences, 2018, 11(21): 685. DOI:10.1007/s12517-018-4037-x.
[11] 席冬冬, 李晓敏, 熊子璇, 等. 生物炭负载纳米零价铁对污染土壤中铜钴镍铬的协同去除[J]. 环境工程, 2020, 38(6): 58-66. DOI:10.13205/j.hjgc.202006010.
[12] ALI A, SHAHEEN S M, GUO D, et al. Apricot shell-and apple tree-derived biochar affect the fractionation and bioavailability of Zn and Cd as well as the microbial activity in smelter contaminated soil[J]. Environmental Pollution, 2020, 264:114773. DOI:10.1016/j.envpol.2020.114773.
[13] PUGA A P, ABREU C A, MELO L C A, et al. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium[J]. Journal of Environmental Management, 2015, 159: 86-93. DOI:10.1016/j.jenvman.2015.05.036.
[14] AL-WABEL M I, USMAN A R A, EI-NAGGAR A H, et al. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants[J]. Saudi Journal of Biological Sciences, 2015, 22(4): 503-511. DOI:10.1016/j.sjbs.2014.12.003.
[15] 刁韩杰, 张进, 王敏艳, 等. 高温热解对污泥炭特性及其重金属形态变化的影响[J]. 环境工程, 2019, 37(3): 29-34.
[16] 刘巍, 陈效民, 景峰, 等. 生物质炭对土壤—水稻系统中Cd迁移累积的影响[J]. 水土保持学报, 2019, 33(1): 323-327.
[17] 彭少麟, 郑凤英. Meta分析及Meta Win软件[J]. 土壤与环境, 1999, 8(4): 295-299. DOI:10.3969/j.issn.1674-5906.1999.04.014.
[18] ALBERT H A, LI X, JEYAKUMAR P, et al. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis[J]. Science of the Total Environment, 2021, 755(Part2): 142582. DOI:10.1016/j.scitotenv.2020.142582.
[19] ZHOU Z H, WANG C K, LUO Y Q. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality[J]. Nature Communications, 2020, 11(1): 3072. DOI:10.1038/s41467-020-16881-7.
[20] 吴舒尧, 黄姣, 李双成. 不同生态恢复方式下生态系统服务与生物多样性恢复效果的整合分析[J]. 生态学报, 2017, 37(20): 6986-6999. DOI:10.5846/stxb201608211716.
[21] LI Y, CHANG S X, TIAN L H, et al. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis[J]. Soil Biology and Biochemistry, 2018, 121: 50-58. DOI:10.1016/j.soilbio.2018.02.024.
[22] GUREVITCH J, KORICHEVA J, NAKAGAWAS, et al. Meta-analysis and the science of research synthesis[J]. Nature, 2018, 555(7695): 175-182. DOI:10.1038/nature25753.
[23] 刘成, 刘晓雨, 张旭辉, 等. 基于整合分析方法评价我国生物质炭施用的增产与固碳减排效果[J]. 农业环境科学学报, 2019, 38(3): 696-706.
[24] 黄敏, 刘茜, 朱楚仪, 等. 施用生物质炭对土壤Cd、Pb有效性影响的整合分析[J]. 环境科学学报, 2019, 39(2): 560-569. DOI:10.13671/j.hjkxxb.2018.0341.
[25] HU Y M, ZHANG P, YANG M. et al. Biochar is an effective amendment to remediate Cd-contaminated soils: a meta-analysis[J]. Journal of Soils and Sediments, 2020, 20(11): 3884-3895. DOI:10.1007/s11368-020-02726-9.
[26] GEISSELER D, LINQUIST B A, LAZICKI P A. Effect of fertilization on soil microorganisms in paddy rice systems-a meta-analysis[J]. Soil Biology and Biochemistry, 2017, 115: 452-460. DOI:10.1016/j.soilbio.2017.09.018.
[27] VILAS-BOAS J A, CARDOSO S J, SENRA M V X, et al. Ciliates as model organisms for the ecotoxicological risk assessment of heavy metals: a meta-analysis[J]. Ecotoxicology and Environmental Safety, 2020, 199: 110669. DOI:10.1016/j.ecoenv.2020.110669.
[28] 孙向阳, 陈金林, 崔晓阳, 等. 土壤学[M]. 北京: 中国林业出版社, 2005.
[29] 熊毅, 李庆逵. 中国土壤[M]. 2版. 北京: 科学出版社, 1987.
[30] 肖婧, 徐虎, 蔡岸冬, 等. 生物质炭特性及施用管理措施对作物产量影响的整合分析[J]. 中国农业科学, 2017, 50(10): 1827-1837. DOI:10.3864/j.issn.0578-1752.2017.10.008.
[31] 范珍珍, 王鑫, 王超, 等. 整合分析氮磷添加对土壤酶活性的影响[J]. 应用生态学报, 2018, 29(4): 1266-1272. DOI:10.13287/j.1001-9332.201804.024.
[32] ADAMS D C, GUREVITCH J, ROSENBERG M S. Resampling tests for meta-analysis of ecological data[J]. Ecology, 1997, 78(4): 1277-1283. DOI:10.2307/2265879.
[33] 蔡岸冬, 张文菊, 杨品品, 等. 基于Meta-Analysis研究施肥对中国农田土壤有机碳及其组分的影响[J]. 中国农业科学, 2015, 48(15): 2995-3004. DOI:10.3864/j.issn.0578-1752.2015.15.009.
[34] SUKREEYAPONGSE O, HOLM P E, STROBEL B W, et al. pH-Dependent release of cadmium, copper, and lead from natural and sludge-amended soils[J]. Journal of Environmental Quality, 2002, 31(6): 1901-1909. DOI:10.2134/jeq2002.1901.
[35] ZENG F R, ALI S, ZHANG H T, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J]. Environmental Pollution, 2011, 159(1): 84-91. DOI:10.1016/j.envpol.2010.09.019.
[36] HUSSAIN B, ASHRAF M N, SHAFEEQ-RAHMAN S, et al. Cadmium stress in paddy fields: effects of soil conditions and remediation strategies[J]. Science of the Total Environment, 2021, 754: 142188. DOI:10.1016/j.scitotenv.2020.142188.
[37] 孙彤, 李可, 付宇童, 等. 改性生物炭对弱碱性Cd污染土壤钝化修复效应和土壤环境质量的影响[J]. 环境科学学报, 2020, 40(7): 2571-2580. DOI:10.13671/j.hjkxxb.2019.0502.
[38] CHEN X, HE H Z, CHEN G K, et al. Effects of biochar and crop straws on the bioavailability of cadmium in contaminated soil[J]. Scientific Reports, 2020, 10(1): 9528. DOI:10.1038/s41598-020-65631-8.
[39] ZHANG G X, GUO X F, ZHAO Z H, et al. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil[J]. Environmental Pollution, 2016, 218(11): 513-522. DOI:10.1016/j.envpol.2016.07.031.
[40] XU W J, HOU S Z, LI Y Q, et al. Bioavailability and speciation of heavy metals in polluted soil as alleviated by different types of biochars[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(4): 484-488. DOI:10.1007/s00128-020-02804-1.
[41] CHEN D, LIU X Y, BIAN R J, et al. Effects of biochar on availability and plant uptake of heavy metals-a meta-analysis[J]. Journal of Environmental Management, 2018, 222: 76-85. DOI:10.1016/j.jenvman.2018.05.004.
[42] 李江遐, 吴林春, 张军, 等. 生物炭修复土壤重金属污染的研究进展[J]. 生态环境学报, 2015, 24(12): 2075-2081. DOI:10.16258/j.cnki.1674-5906.2015.12.024.
[43] ZENG X Y, XIAO Z H, ZHANG G L, et al. Speciation and bioavailability of heavy metals in pyrolytic biochar of swine and goat manures[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132: 82-93. DOI:10.1016/j.jaap.2018.03.012.
[44] VALDÉS-RODRÍGUEZ O A, SÁNCHEZ-SÁNCHEZ O, PÉREZ-VÁZQUEZ A. Effects of soil texture on germination and survival of non-toxic Jatropha curcas seeds[J]. Biomass and Bioenergy, 2013, 48: 167-170. DOI:10.1016/j.biombioe.2012.10.025.
[45] PAULINA G, YONG S O, PATRYK O. The dark side of black gold: ecotoxicological aspects of biochar and biochar-amended soils[J]. Journal of Hazardous Materials, 2021, 403: 123833. DOI:10.1016/j.jhazmat.2020.123833.
[46] CAO X D, MA L N, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9): 3285-3291. DOI:10.1021/es803092k.
[47] 郑凯琪, 王俊超, 刘姝彤, 等. 不同热解温度污泥生物炭对Pb2+、Cd2+的吸附特性[J]. 环境工程学报, 2016, 10(12): 7277-7282. DOI:10.12030/j.cjee.201507083.
[48] ANGIN D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake[J]. Bioresource Technology, 2003, 128(1): 593-597. DOI:10.1016/j.biortech.2012.10.150.
[49] 蔡朝卉, 楚沉静, 郑浩, 等. 热解温度和时间对香蒲生物炭性质的影响及生态风险评估[J]. 环境科学, 2020, 41(6): 2963-2971. DOI:10.13227/j.hjkx.201909072.
[50] 王道涵, 李景阳, 汤家喜. 不同热解温度生物炭对溶液中镉的吸附性能研究[J]. 工业水处理, 2020, 40(1): 18-23. DOI:10.11894/iwt.2018-1173.
[51] 蔡瑞, 李玉奇. 生物质炭对不同质地镉污染土壤性质及有效镉的影响[J]. 安徽农业科学, 2019, 47(3): 70-72. DOI:10.3969/j.issn.0517-6611.2019.03.023.
[52] 葛丽炜, 夏颖, 刘书悦, 等. 热解温度和时间对马弗炉制备生物炭的影响[J]. 沈阳农业大学学报, 2018, 49(1): 95-100.
[53] 李思苇, RUBAB S, 杨文浩, 等. 炭化温度和时间对不同废菌棒生物炭结构性质的影响[J]. 福建农业学报, 2019, 34(10): 1211-1220. DOI:10.19303/j.issn.1008-0384.2019.10.015.
[54] 鞠天琛, 於斯, 李晓军, 等. 低温鸡粪生物质炭的制备及其对土壤理化性质的影响[J]. 吉林农业大学学报, 2020, 42(3): 322-328. DOI:10.13327/j.jjlau.2020.5561.
[55] CIMÒ G, KUCERIK J, BERNS A E, et al. Effect of heating time and temperature on the chemical characteristics of biochar from poultry manure[J]. Journal of Agricultural and Food Chemistry, 2014, 62(8): 1912-1918. DOI:10.1021/jf405549z.
[56] 常春, 王胜利, 郭景阳, 等. 不同热解条件下合成生物炭对铜离子的吸附动力学研究[J]. 环境科学学报, 2016, 36(7): 2491-2502. DOI:10.13671/j.hjkxxb.2015.0742.
[57] 李永正, 毛凌晨, 严南峡, 等. 鸽粪基生物炭对土壤重金属形态的影响[J]. 燃烧科学与技术, 2020, 26(2): 185-191.
[58] REES F, SIMONNOT M O, MOREL J L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase[J]. European Journal of Soil Science, 2014, 65(1): 149-161. DOI:10.1111/ejss.12107.
[59] 高瑞丽, 朱俊, 汤帆, 等. 水稻秸秆生物炭对镉、铅复合污染土壤中重金属形态转化的短期影响[J]. 环境科学学报, 2016, 36(1): 251-256. DOI:10.13671/j.hjkxxb.2015.0463.
[60] MENG J, TAO M M, WANG L L, et al. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure[J]. Science of the Total Environment, 2018, 633: 300-307. DOI:10.1016/j.scitotenv.2018.03.199.
[61] CHENG S, CHEN T, XU W B, et al. Application research of biochar for the remediation of soil heavy metals contamination: A review[J]. Molecules, 2020, 25(14): 3167. DOI:10.3390/molecules25143167.
[1] 彭丽梅, 赵理, 周悟, 胡月明. 广州市从化区耕地土壤重金属风险评价[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 118-129.
[2] 徐婷婷, 余秋平, 漆培艺, 刘可慧, 李艺, 蒋永荣, 于方明. 不同淋洗剂对矿区土壤重金属解吸的影响[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 188-193.
[3] 江绍锋, 李云飞, 蓝运华, 刘祎, 陆祖军. 一株产酸克雷伯氏菌的分离鉴定及其药敏检测[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 137-143.
[4] 蓝运华, 江绍锋, 龚有丽, 李云飞, 夏樱花, 陆祖军. 会仙湿地水体百草枯污染及其固定/转化率[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 142-151.
[5] 邓华, 黄青贤, 卢锦怡, 潘明伟, 李明顺. 短毛蓼对锰污染土壤的修复效应研究[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 132-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡锦铭, 韦笃取. 不同阶次分数阶永磁同步电机的混合投影同步[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 1 -8 .
[2] 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9 -20 .
[3] 刘东, 周莉, 郑晓亮. 基于SA-DBN的超短期电力负荷预测[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 21 -33 .
[4] 张伟彬, 吴军, 易见兵. 基于RFB网络的特征融合管制物品检测算法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 34 -46 .
[5] 王金艳, 胡春, 高健. 一种面向知识编译的OBDD构造方法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 47 -54 .
[6] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55 -67 .
[7] 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68 -78 .
[8] 李松涛, 李群宏, 张文. 三自由度碰撞振动系统的余维二擦边分岔与混沌控制[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 79 -92 .
[9] 赵红涛, 刘志伟. λ重完全二部3-一致超图λK(3)n,n分解为超图双三角锥[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 93 -98 .
[10] 李梦, 曹庆先 , 胡宝清. 1960—2018年广西大陆海岸线时空变迁分析[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 99 -108 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发