广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (5): 150-162.doi: 10.16088/j.issn.1001-6600.2024030702

• 研究论文 • 上一篇    下一篇

赤泥-聚丙烯酸-羧甲基纤维素水凝胶对水中Pb2+吸附研究

付佳慧1,2,3, 王威1,2,3, 邓华1,2,3*, 赵栋1,2,3, 张舒云1,2,3, 叶顺云1,2,3, 胡乐宁1,2,3   

  1. 1.广西生态脆弱区环境过程与修复重点实验室(广西师范大学),广西 桂林 541006;
    2.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006;
    3.广西师范大学 环境与资源学院,广西 桂林 541006
  • 收稿日期:2024-03-07 修回日期:2024-04-14 出版日期:2024-09-25 发布日期:2024-10-11
  • 通讯作者: 邓华(1977—),女,湖南祁阳人,广西师范大学教授,博士。E-mail: denghua@gxnu.edu.cn
  • 基金资助:
    广西重点研发计划项目(GKAB22035038)

Adsorption Effect of Red Mud-Polyacrylic Acid-Carboxymethyl Cellulose Hydrogel on Pb2+ in Water

FU Jiahui1,2,3, WANG Wei1,2,3, DENG Hua1,2,3*, ZHAO Dong1,2,3, ZHANG Shuyun1,2,3, YE Shunyun1,2,3, HU Lening1,2,3   

  1. 1. Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006 China;
    3. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2024-03-07 Revised:2024-04-14 Online:2024-09-25 Published:2024-10-11

摘要: 为解决环境中重金属铅的污染问题,并对氧化铝冶炼中产生的工业固体废弃物赤泥进行妥当处置,本文以赤泥为原材料,通过聚合交联反应引入羧甲基纤维素钠(CMC)和丙烯酸(AA),制备得到吸附性能好、稳定性强和回收利用率高的赤泥-聚丙烯酸-羧甲基纤维素(RMAAC)复合水凝胶材料,将其作为吸附剂应用于水中Pb2+的吸附去除。结果表明,RMAAC对Pb2+的吸附主要归因于单分子层化学吸附,同时存在物理吸附,涉及的吸附机理有离子交换、官能团络合、阳离子-π和配位螯合作用。Langmuir模型计算得到的最大吸附量为730.16 mg/g,在pH为3~6时均具有较好的吸附性能。在多元重金属离子污染中,RMAAC展现出对Pb2+较高的选择性吸附能力。

关键词: 水凝胶, 赤泥, 复合材料, 铅, 吸附机理, 选择性吸附

Abstract: In order to solve the pollution of lead (Pb) in the environment and to properly dispose of red mud,an industrial solid waste generated in alumina oxide smelting. In this study,red mud was used as raw material,sodium carboxymethyl cellulose (CMC) and acrylic acid (AA) were introduced through polymerization and cross-linking reaction to prepare red mud-polyacrylic acid-carboxymethyl cellulose (RMAAC) composite hydrogel. It had adsorption performance,strong stability and high recycling rate,which were used as adsorbents for adsorption of Pb2+ in water. The adsorption of Pb2+ by RMAAC was mainly attributed to monomolecular layer chemisorption with the involvement of physisorption. The adsorption mechanisms may include ion exchange,functional group complexation,cation-π and ligand chelation. The maximum adsorption amount calculated by Langmuir model was 730.16 mg/g,and excellent adsorption properties within a broad pH range of 3 to 6. RMAAC showed high selective adsorption capacity for Pb2+ in the pollution of multiple heavy metal ions.

Key words: hydrogel, red mud, complex material, lead, adsorption mechanism, selective adsorption

中图分类号:  X53

[1] SINGH V,SINGH N,RAI S N,et al. Heavy metal contamination in the aquatic ecosystem:toxicity and its remediation using eco-friendly approaches[J]. Toxics,2023,11(2):147. DOI: 10.3390/toxics11020147.
[2] SHI J D,ZHAO D,REN F T,et al. Spatiotemporal variation of soil heavy metals in China:the pollution status and risk assessment[J]. Science of the Total Environment,2023,871:161768. DOI: 10.1016/j.scitotenv.2023.161768.
[3] GOYAL P,TIWARY C S,MISRA S K. Ion exchange based approach for rapid and selective Pb(II) removal using iron oxide decorated metal organic framework hybrid[J]. Journal of Environmental Management,2021,277:111469. DOI: 10.1016/j.jenvman. 2020.111469.
[4] ZHAO B Y,HE J J,WANG L. Adsorption/desorption performance of cellulose membrane for Pb(Ⅱ)[J]. Green Processing and Synthesis,2023,12(1):20230014. DOI: 10.1515/gps-2023-0014.
[5] MOSIVAND S,MONZON L M A,KAZEMINEZHAD I,et al. Pulsed electrochemical and electroless techniques for efficient removal of Sb and Pb from water[J]. Environmental Science:Water Research & Technology,2018,4(12):2179-2190. DOI: 10.1039/c8ew00645h.
[6] SU X Y,CHEN Y,LI Y F,et al. Enhanced adsorption of aqueous Pb(Ⅱ) and Cu(Ⅱ) by biochar loaded with layered double hydroxide:crucial role of mineral precipitation[J]. Journal of Molecular Liquids,2022,357:119083. DOI: 10.1016/j.molliq.2022.119083.
[7] 邓华,张俊渝,黄瑞,等. 竹炭负载氧化锌对Cr(Ⅵ)的吸附性能和机理[J]. 广西师范大学学报(自然科学版),2023,41(1):131-142. DOI: 10.16088/j.issn.1001-6600.2022010501.
[8] JHA S,GAUR R,SHAHABUDDIN S,et al. Biochar as sustainable alternative and green adsorbent for the remediation of noxious pollutants:a comprehensive review[J]. Toxics,2023,11(2):117. DOI: 10.3390/toxics11020117.
[9] JATOI A S,NGUYEN H M,AHMED J,et al. Bio-sorbents derived from agricultural biomass for the removal of emerging pollutants and its adsorption mechanisms[J]. Journal of the Iranian Chemical Society,2023,20(10):2457-2470. DOI: 10.1007/s13738-023-02848-0.
[10] ZHOU Z F,XU X T,LUO D X,et al. Characteristics and influence factors of Pb(II) adsorption by graphene oxide-montmorillonite composite[J]. Chemistry & Biodiversity,2024,21(4):e202301899. DOI: 10.1002/cbdv.202301899.
[11] 王威,邓华,胡乐宁,等. 赤泥-海藻酸钠水凝胶对水中Pb(Ⅱ)的吸附性能[J]. 广西师范大学学报(自然科学版),2023,41(5):105-115. DOI: 10.16088/j.issn.1001-6600.2022110901.
[12] WANG B,CHI H J,HOU Y T,et al. Enhancement of Pb(Ⅱ) adsorption and antibacterial performances of sodium alginate/acrylic acid composite hydrogel via snowflake-like ZnO modification[J]. Polymer-Plastics Technology and Materials,2020,59(9):1010-1022. DOI: 10.1080/25740881.2020.1719140.
[13] 刘博,吴梦兰,黄续崟,等. 市政污泥生物炭对水体中铅的吸附研究[J]. 水处理技术,2022,48(9):42-45. DOI: 10.16796/j.cnki.1000-3770.2022.09.009.
[14] HUANG Y P,SHEN D K,WANG Z H. Preparation of citric acid-sewage sludge hydrochar and its adsorption performance for Pb(Ⅱ) in aqueous solution[J]. Polymers,2022,14(5):968. DOI: 10.3390/polym14050968.
[15] AHMED W,MEHMOOD S,MAHMOOD M,et al. Adsorption of Pb(II) from wastewater using a red mud modified rice-straw biochar:influencing factors and reusability[J]. Environmental Pollution,2023,326:121405. DOI: 10.1016/j.envpol.2023.121405.
[16] YANG J,CHEN X X,ZHANG J H,et al. Role of chitosan-based hydrogels in pollutants adsorption and freshwater harvesting:a critical review[J]. International Journal of Biological Macromolecules,2021,189:53-64. DOI: 10.1016/j.ijbiomac.2021.08.047.
[17] 张靖羚,许乃川,刘莹,等. 羧甲基纤维素基复合水凝胶的研究及应用进展[J]. 高分子通报,2024,37(5):582-592. DOI: 10.14028/j.cnki.1003-3726.2024.23.343.
[18] GODIYA C B,CHENG X,LI D W,et al. Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater[J]. Journal of Hazardous Materials,2019,364:28-38. DOI: 10.1016/j.jhazmat.2018. 09.076.
[19] 陈子健,唐艳军,朱鹏,等. 羧甲基纤维素的制备及其应用进展[J]. 中国造纸学报,2022,37(3):144-154. DOI: 10.11981/j.issn.1000-6842.2022.03.144.
[20] GENG Y T,XUE H,ZHANG Z H,et al. Recent advances in carboxymethyl chitosan-based materials for biomedical applications[J]. Carbohydrate Polymers,2023,305:120555. DOI: 10.1016/j.carbpol.2023.120555.
[21] FAN X B,PENG L L,WANG X H,et al. Efficient capture of lead ion and methylene blue by functionalized biomass carbon-based adsorbent for wastewater treatment[J]. Industrial Crops and Products,2022,183:114966. DOI: 10.1016/j.indcrop.2022.114966.
[22] 王笑,刘元元,汪军. 联合法赤泥的特性及其对水溶液中Pb(Ⅱ)的去除[J]. 环境工程学报,2020,14(2):515-522. DOI: 10.12030/j.cjee.201904084.
[23] 胡泽康,张惠灵,梁俊杰,等. 壳聚糖/羧甲基纤维素/聚丙烯酸凝胶对含铅废水的吸附研究[J]. 工业水处理,2023,43(12):79-88. DOI: 10.19965/j.cnki.iwt.2022-1185.
[24] MANZOOR Q,FARRUKH M A,SAJID A. Optimization of lead(Ⅱ) and chromium(Ⅵ) adsorption using graphene oxide/ZnO/chitosan nanocomposite by response surface methodology[J]. Applied Surface Science,2024,655:159544. DOI: 10.1016/j.apsusc.2024.159544.
[25] 李琪,张慧,安超,等. 响应面法优化苦瓜甙的提取工艺及其HPLC测定[J]. 安徽农业大学学报,2022,49(1):175-180. DOI: 10.13610/j.cnki.1672-352x.20220325.011.
[26] MOHAN D,SINGH P,SARSWAT A,et al. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars[J]. Journal of Colloid and Interface Science,2015,448:238-250. DOI: 10.1016/j.jcis.2014.12.030.
[27] LI J,LIN G,ZHONG Z,et al. A novel magnetic Ti-MOF/chitosan composite for efficient adsorption of Pb(Ⅱ) from aqueous solutions:synthesis and investigation[J]. International Journal of Biological Macromolecules,2024,258:129170. DOI: 10.1016/j.ijbiomac. 2023.129170.
[28] BAI X S,LIN J W,ZHANG Z B,et al. Immobilization of lead,copper,cadmium,nickel,and zinc in sediment by red mud:adsorption characteristics,mechanism,and effect of dosage on immobilization efficiency[J]. Environmental Science and Pollution Research International,2022,29(34):51793-51814. DOI: 10.1007/s11356-022-19506-2.
[29] MOZAFFARI MAJD M,KORDZADEH-KERMANI V,GHALANDARI V,et al. Adsorption isotherm models:a comprehensive and systematic review (2010-2020)[J]. Science of the Total Environment,2022,812:151334. DOI: 10.1016/j.scitotenv.2021.151334.
[30] JIANG C L,WANG X H,WANG G H,et al. Adsorption performance of a polysaccharide composite hydrogel based on crosslinked glucan/chitosan for heavy metal ions[J]. Composites Part B Engineering,2019,169:45-54. DOI: 10.1016/j.compositesb.2019.03.082.
[31] CHEN Y F,LI Q,LI Y J,et al. Fabrication of cellulose nanocrystal-g-poly(acrylic acid-Co-acrylamide) aerogels for efficient Pb(II) removal[J]. Polymers,2020,12(2):333. DOI: 10.3390/polym12020333.
[32] LUU T T,DINH V P,NGUYEN Q H,et al. Pb(II) adsorption mechanism and capability from aqueous solution using red mud modified by chitosan[J]. Chemosphere,2022,287:132279. DOI: 10.1016/j.chemosphere.2021.132279.
[33] ZHENG Y P,SUN K J,WEN N,et al. An all-biomass adsorbent:competitive removal and correlative mechanism of Cu2+,Pb2+,Cd2+ from multi-element aqueous solutions[J]. Polymer Bulletin,2023,80(12):12619-12640. DOI: 10.1007/s00289-022-04665-6.
[34] SHAH B,CHUDASAMA U. Kinetics,thermodynamics and metal separation studies of transition (Co2+,Ni2+,Cu2+,Zn2+) and heavy metal ions (Cd2+,Hg2+,Pb2+) using novel hybrid ion exchanger-zirconium amino tris methylene phosphonic acid[J]. Separation Science and Technology,2019,54(10):1560-1572. DOI: 10.1080/01496395.2018.1519580.
[35] ZOU Y L. Cu2+,Cd2++,and Pb2+ ions adsorption from wastewater using polysaccharide hydrogels made of oxidized carboxymethyl cellulose and chitosan grafted with catechol groups[J]. Iranian Polymer Journal,2024,33(1):57-66. DOI: 10.1007/s13726-023-01234-0.
[36] DING Y,LIU Y G,LIU S B,et al. Competitive removal of Cd(Ⅱ) and Pb(Ⅱ) by biochars produced from water hyacinths:performance and mechanism[J]. Rsc Advances,2016,6(7):5223-5232. DOI: 10.1039/c5ra26248h.
[37] XU X Y,OUYANG X K,YANG L Y. Adsorption of Pb(Ⅱ) from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel beads[J]. Journal of Molecular Liquids,2021,322:114523. DOI:10.1016/j.molliq.2020.114523.
[38] XIA L Y,LU Y Z,MENG H,et al. Preparation of C-MOx nanocomposite for efficient adsorption of heavy metal ions via mechanochemical reaction of CaC2 and transitional metal oxides[J]. Journal of Hazardous Materials,2020,393:122487. DOI: 10.1016/j.jhazmat.2020.122487.
[39] 刘境. 改性赤泥对重金属的吸附性能研究[D]. 贵阳:贵州大学,2020. DOI: 10.27047/d.cnki.ggudu.2020.001070.
[40] MA J H,LUO J M,LIU Y T,et al. Pb(II),Cu(Ⅱ) and Cd(Ⅱ) removal using a humic substance-based double network hydrogel in individual and multicomponent systems[J]. Journal of Materials Chemistry A,2018,6(41):20110-20120. DOI: 10.1039/c8ta07250g.
[41] 石晓磊. 赤泥改性酒糟生物炭对Pb2+和Zn2+的吸附性能研究及应用[D].贵阳:贵州民族大学,2023. DOI: 10.27807/d.cnki.cgzmz.2023.000304.
[42] HU Z H,OMER A M,OUYANG X K,et al. Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(Ⅱ) from aqueous solution[J]. International Journal of Biological Macromolecules,2018,108:149-157. DOI: 10.1016/j.ijbiomac.2017.11.171.
[43] FENG Z Y,FENG C P,CHEN N,et al. Self-polymerization magnetic hydrogel for Cu and Pb adsorption from aqueous solutions:theoretical insight and implication[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,677:132298. DOI: 10.1016/j.colsurfa.2023.132298.
[1] 周训富, 周小松, 罗金, 许丽梅, 方岳平. Co3ZnC@C促进g-C3N4光催化产氢及其机理[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 166-174.
[2] 王威, 邓华, 胡乐宁, 李杨. 赤泥-海藻酸钠水凝胶对水中Pb(Ⅱ)的吸附性能[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 105-115.
[3] 邓华, 张俊渝, 黄瑞, 王威, 胡乐宁. 竹炭负载氧化锌对Cr(Ⅵ)的吸附性能和机理[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 131-142.
[4] 邓华, 李秋燕, 周瑞爽, 庞舒月, 刘金玉, 康彩艳. 短毛蓼粉末对Cd(Ⅱ)和Cu(Ⅱ)的吸附研究[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 102-112.
[5] 熊飞兵, 杨峰. 镨离子掺杂钨酸铅晶体荧光衰减动态研究[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 71-75.
[6] 赵彦春, 王凤阳, 杨洁, 田建袅, 占璐, 聂素连, 宁珍. PtPb/HCSs催化剂制备及电催化氧化甲醇研究[J]. 广西师范大学学报(自然科学版), 2010, 28(4): 76-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李文博, 董青, 刘超, 张奇. 基于对比学习的儿科问诊对话细粒度意图识别[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 1 -10 .
[2] 高盛祥, 杨元樟, 王琳钦, 莫尚斌, 余正涛, 董凌. 面向域外说话人适应场景的多层级解耦个性化语音合成[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 11 -21 .
[3] 朱格格, 黄安书, 覃盈盈. 基于Web of Science的国际红树林研究发展态势分析[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 1 -12 .
[4] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[5] 左钧元, 李欣彤, 曾子涵, 梁超, 蔡进军. 金属有机骨架基催化剂在糠醛选择性加氢反应中的应用研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 28 -38 .
[6] 谭全伟, 薛贵军, 谢文举. 基于VMD和RDC-Informer的短期供热负荷预测模型[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 39 -51 .
[7] 刘畅平, 宋树祥, 蒋品群, 岑明灿. 基于开关电容的差分无源N通道滤波器[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 52 -60 .
[8] 王党树, 孙龙, 董振, 贾如琳, 杨黎康, 吴家驹, 王新霞. 变化负载下全桥LLC谐振变换器参数优化设计[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 61 -71 .
[9] 张锦忠, 韦笃取. PMSM混沌系统无初始状态约束的固定时间有界控制[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 72 -78 .
[10] 涂智荣, 凌海英, 李帼, 陆声链, 钱婷婷, 陈明. 基于改进YOLOv7-Tiny的轻量化百香果检测方法[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 79 -90 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发