|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (2): 166-174.doi: 10.16088/j.issn.1001-6600.2023070603
周训富1*, 周小松1, 罗金1, 许丽梅1, 方岳平2*
ZHOU Xunfu1*, ZHOU Xiaosong1, LUO Jin1, XU Limei1, FANG Yueping2*
摘要: 光催化产氢技术是实现太阳能到绿色氢能转化的有效途径,然而其实际应用受到高成本、低效率的限制。本文通过简单的沉淀-煅烧法合成一种独特的碳包覆Co3ZnC纳米颗粒(Co3ZnC@C),将其作为助催化剂,与光催化剂g-C3N4耦合构建新颖的不含贵金属的复合光催化剂Co3ZnC@C/g-C3N4,并对其结构和形貌进行表征,对其光催化产氢性能进行研究。实验结果表明:Co3ZnC@C/g-C3N4的光催化产氢速率是纯g-C3N4的109倍,催化产氢速率大幅提高是因为Co3ZnC@C作为助催化剂负载在g-C3N4的表面,能够促进g-C3N4的电荷分离,加快其表面析氢反应速率。该研究拓宽了金属碳化物材料的应用范围,为设计先进的太阳能转换光催化剂提供了新的途径。
中图分类号: O643.36; O644.1; TQ116.2
[1] HUANG W L, DAI J, XIONG L H. Towards a sustainable energy future: factors affecting solar-hydrogen energy production in China[J]. Sustainable Energy Technologies and Assessments, 2022, 52(Part A): 102059. DOI: 10.1016/j.seta.2022.102059. [2] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. DOI: 10.1038/238037a0. [3] 闫瑞晗, 邓细宇, 沈丛丛, 等. 用于分解水制氢的g-C3N4光催化剂的改性研究进展[J]. 化工新型材料. 2022, 50(12): 56-60. DOI: 10.19817/j.cnki.issn1006-3536.2022.12.011. [4] FU J W, YU J G, JIANG C J, et al. g-C3N4-based heterostructured photocatalysts[J]. Advanced Energy Materials, 2018, 8(3): 201701503. DOI: 10.1002/aenm.201701503. [5] 粟阳藩, 吴林珍, 李依林, 等. Ⅱ型TiO2/g-C3N4异质结的构筑促进高效光催化U(Ⅵ)还原[J]. 无机化学学报, 2023, 39(4): 689-698. DOI: 10.11862/CJIC.2023.029. [6] HASNAN N S N, MOHAMED M A, MOHD HIR Z A. Surface physicochemistry modification and structural nanoarchitectures of g-C3N4 for wastewater remediation and solar fuel generation[J]. Advanced Materials Technologies, 2022, 7(5): 2100993. DOI: 10.1002/admt.202100993. [7] 刘俊琛, 黄浩然, 葛春玉, 等. 磷掺杂与MoS2光沉积共同促进CdS光催化产氢[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 445-456. DOI: 10.16088/j.issn.1001-6600.2021123007. [8] ZHU Q H, XU Z H, QIU B C, et al. Emerging cocatalysts on g-C3N4 for photocatalytic hydrogen evolution[J]. Small, 2021, 17(40): 2101070. DOI: 10.1002/smll.202101070. [9] WANG J L, WANG S Z. A critical review on graphitic carbon nitride(g-C3N4)-based materials: preparation, modification and environmental application[J]. Coordination Chemistry Reviews, 2022, 453: 214338. DOI: 10.1016/j.ccr.2021.214338. [10] TAKANABE K. Photocatalytic water splitting: quantitative approaches toward photocatalyst by design[J]. ACS Catalysis, 2017, 7: 8006-8022. DOI: 10.1021/acscatal.7b02662. [11] XU Q L, CHENG B, YU J G, et al. Making Co-condensed amorphous carbon/g-C3N4 composites with improved visible-light photocatalytic H2-production performance using Pt as cocatalyst[J]. Carbon, 2017, 118: 241-249. DOI:10.1016/j.carbon.2017.03.052. [12] ZHU Y Q, WANG T, XU T, et al. Size effect of Pt Co-catalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution[J]. Applied Surface Science, 2019, 464: 36-42. DOI: 10.1016/j.apsusc.2018.09.061. [13] GÜY N. Directional transfer of photocarriers on CdS/g-C3N4 heterojunction modified with Pd as a cocatalyst for synergistically enhanced photocatalytic hydrogen production[J]. Applied Surface Science, 2020, 522: 146442. DOI: 10.1016/j.apsusc.2020.146442. [14] MASIH D, MA Y Y, ROHANI S. Graphitic C3N4 based noble-metal-free photocatalyst systems: a review[J]. Applied Catalysis B: Environmental, 2017, 206(5): 556-588. DOI:10.1016/j.apcatb.2017.01.061. [15] 郭俊兰,梁英华,王欢,等.光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114. DOI: 10.7536/PC200803. [16] ZHOU X F, TIAN Y H, LUO J, et al. MoC quantum Dots@N-doped-carbon for low-cost and efficient hydrogen evolution reaction: from electrocatalysis to photocatalysis[J]. Advanced Functional Materials, 2022, 32(27): 2201518. DOI: 10.1002/adfm.202201518. [17] ZHOU X F, WANG P, LI M, et al. Synergistic effect of phosphorus doping and MoS2 Co-catalysts on g-C3N4 photocatalysts for enhanced solar water splitting[J]. Journal of Materials Science & Technology, 2023, 158: 171-179. DOI: 10.1016/j.jmst.2023.02.041. [18] ZHOU X F, ZHU Y T, GAO Q Z, et al. Modified graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution[J]. ChemSusChem, 2019, 12(22): 4996-5006. DOI: 10.1002/cssc.201901960. [19] LIN Z Z, WANG X C. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis[J]. Angewandte Chemie International Edition, 2013, 52(6): 1735-8. DOI: 10.1002/anie.201209017. [20] ZHOU X F, FANG Y X, CAI X, et al. In situ photodeposited construction of Pt-CdS/g-C3N4-MnOx composite photocatalyst for efficient visible-light-driven overall water splitting[J]. ACS Applied Materials and Interfaces, 2020, 12(18): 20579-20588. DOI: 10.1021/acsami.0c04241. [21] WANG C X, ZHANG W J, FAN J, et al. S-scheme bimetallic sulfide ZnCo2S4/g-C3N4 heterojunction for photocatalytic H2 evolution[J]. Ceramics International, 2021, 47(21): 30194-30202. DOI: 10.1016/j.ceramint.2021.07.199. [22] ZHANG Y P, JIN Z L, LUAN A, et al. Charge transfer behaviors over MOF-5@g-C3N4 with NixMo1-xS2 modification[J]. International Journal of Hydrogen Energy, 2018, 43(21): 9914-9923. DOI: 10.1016/j.ijhydene.2018.04.071. [23] XU X J, SI Z C, LIU L P, et al. CoMoS2/rGO/C3N4 ternary heterojunctions catalysts with high photocatalytic activity and stability for hydrogen evolution under visible light irradiation[J]. Applied Surface Science, 2018, 435: 1296-1306. DOI: 10.1016/j.apsusc.2017.12.001. [24] FAN K, JIN Z L, YANG H, et al. Promotion of the excited electron transfer over Ni- and Co-sulfide co-doped g-C3N4 photocatalyst (g-C3N4/NixCo1-xS2) for hydrogen production under visible light irradiation[J]. Scientific Reports, 2017, 7(1): 7710. DOI: 10.1038/s41598-017-08163-y. [25] JIANG K R, IQBAL W, YANG B, et al. Noble metal-free NiCo2S4/CN sheet-on-sheet heterostructure for highly efficient visible-light-driven photocatalytic hydrogen evolution[J]. Journal of Alloys and Compounds, 2021, 853: 157284. DOI: 10.1016/j.jallcom.2020.157284. [26] JIANG L S, WANG K, WU X Y, et al. Amorphous bimetallic cobalt nickel sulfide cocatalysts for significantly boosting photocatalytic hydrogen evolution performance of graphitic carbon nitride: efficient interfacial charge transfer[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26898-26908. DOI: 10.1021/acsami.9b07311. [27] DONG J, SHI Y, HUANG C P, et al. A new and stable Mo-Mo2C modified g-C3N4 photocatalyst for efficient visible light photocatalytic H2 production[J]. Applied Catalysis B: Environmental, 2019, 243: 27-35. DOI: 10.1016/j.apcatb.2018.10.016. [28] GELDERMAN K, LEE L, DONNE S W. Flat-band potential of a semiconductor: using the mott-schottky equation[J]. Journal of Chemical Education, 2007, 84: 685. DOI: 10.1021/ed084p685. [29] ISHIKAWA A, TAKATA T, KONDO J N, et al. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ≤650 nm)[J]. Journal of the American Chemical Society, 2002, 124(45): 13547-13553. DOI: 10.1021/ja0269643. [30] LI P, ZHUANG Z H, DU C, et al. Insights into the Mo-doping effect on the electrocatalytic performance of hierarchical CoxMoyS nanosheet arrays for hydrogen generation and urea oxidation[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40194-40203. DOI:10.1021/acsami.0c06716. |
[1] | 刘俊琛, 黄浩然, 葛春玉, 王红强, 方岳平. 磷掺杂与MoS2光沉积共同促进CdS光催化产氢[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 445-456. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |