广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (2): 166-174.doi: 10.16088/j.issn.1001-6600.2023070603

• • 上一篇    下一篇

Co3ZnC@C促进g-C3N4光催化产氢及其机理

周训富1*, 周小松1, 罗金1, 许丽梅1, 方岳平2*   

  1. 1.岭南师范学院 化学化工学院, 广东 湛江 524048;
    2.华南农业大学 材料与能源学院, 广东 广州 510642
  • 收稿日期:2023-07-06 修回日期:2023-08-16 发布日期:2024-04-22
  • 通讯作者: 周训富(1988—), 男, 湖南衡阳人, 岭南师范学院讲师, 博士。 E-mail: xfzhou@lingnan.edu.cn;方岳平(1966—), 男, 湖南岳阳人, 华南农业大学教授, 博导。 E-mail: ypfang@scau.edu.cn
  • 基金资助:
    国家自然科学基金(21972048); 广东省基础与应用基础研究基金(2021A1515110003)

Co3ZnC@C Promoting the Photocatalytic Hydrogen Production of g-C3N4 and Its Mechanism

ZHOU Xunfu1*, ZHOU Xiaosong1, LUO Jin1, XU Limei1, FANG Yueping2*   

  1. 1. School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang Guangdong 524048, China;
    2. College of Materials and Energy, South China Agricultural University, Guangzhou Guangdong 510642, China
  • Received:2023-07-06 Revised:2023-08-16 Published:2024-04-22

摘要: 光催化产氢技术是实现太阳能到绿色氢能转化的有效途径,然而其实际应用受到高成本、低效率的限制。本文通过简单的沉淀-煅烧法合成一种独特的碳包覆Co3ZnC纳米颗粒(Co3ZnC@C),将其作为助催化剂,与光催化剂g-C3N4耦合构建新颖的不含贵金属的复合光催化剂Co3ZnC@C/g-C3N4,并对其结构和形貌进行表征,对其光催化产氢性能进行研究。实验结果表明:Co3ZnC@C/g-C3N4的光催化产氢速率是纯g-C3N4的109倍,催化产氢速率大幅提高是因为Co3ZnC@C作为助催化剂负载在g-C3N4的表面,能够促进g-C3N4的电荷分离,加快其表面析氢反应速率。该研究拓宽了金属碳化物材料的应用范围,为设计先进的太阳能转换光催化剂提供了新的途径。

关键词: 碳化钴锌, 氮化碳, 复合材料, 光催化产氢, 助催化剂

Abstract: Photocatalytic hydrogen production technology is an effective way to realize the conversion of solar energy to green hydrogen energy, but its practical application is limited by its high cost and low efficiency. Here, a kind of carbon-coated Co3ZnC nanoparticle (Co3ZnC@C) was synthesized by a simple precipitation-calcination method. As a cocatalyst, Co3ZnC@C was coupled with photocatalyst g-C3N4 to construct a noble metal-free composite photocatalyst Co3ZnC@C/g-C3N4. The experimental results show that the photocatalytic hydrogen production rate of Co3ZnC@C/g-C3N4 is 109 times higher than that of g-C3N4, because Co3ZnC@C, as a co-catalyst supported on the surface of g-C3N4, can improve the charge separation efficiency and accelerate the surface hydrogen evolution reaction rate. The research broadens the application range of metal carbide materials and provides a new way for the design of advanced solar energy conversion photocatalysts.

Key words: zinc cobalt carbide, carbon nitride, composite material, photocatalytic hydrogen evolution, co-catalyst

中图分类号:  O643.36; O644.1; TQ116.2

[1] HUANG W L, DAI J, XIONG L H. Towards a sustainable energy future: factors affecting solar-hydrogen energy production in China[J]. Sustainable Energy Technologies and Assessments, 2022, 52(Part A): 102059. DOI: 10.1016/j.seta.2022.102059.
[2] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. DOI: 10.1038/238037a0.
[3] 闫瑞晗, 邓细宇, 沈丛丛, 等. 用于分解水制氢的g-C3N4光催化剂的改性研究进展[J]. 化工新型材料. 2022, 50(12): 56-60. DOI: 10.19817/j.cnki.issn1006-3536.2022.12.011.
[4] FU J W, YU J G, JIANG C J, et al. g-C3N4-based heterostructured photocatalysts[J]. Advanced Energy Materials, 2018, 8(3): 201701503. DOI: 10.1002/aenm.201701503.
[5] 粟阳藩, 吴林珍, 李依林, 等. Ⅱ型TiO2/g-C3N4异质结的构筑促进高效光催化U(Ⅵ)还原[J]. 无机化学学报, 2023, 39(4): 689-698. DOI: 10.11862/CJIC.2023.029.
[6] HASNAN N S N, MOHAMED M A, MOHD HIR Z A. Surface physicochemistry modification and structural nanoarchitectures of g-C3N4 for wastewater remediation and solar fuel generation[J]. Advanced Materials Technologies, 2022, 7(5): 2100993. DOI: 10.1002/admt.202100993.
[7] 刘俊琛, 黄浩然, 葛春玉, 等. 磷掺杂与MoS2光沉积共同促进CdS光催化产氢[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 445-456. DOI: 10.16088/j.issn.1001-6600.2021123007.
[8] ZHU Q H, XU Z H, QIU B C, et al. Emerging cocatalysts on g-C3N4 for photocatalytic hydrogen evolution[J]. Small, 2021, 17(40): 2101070. DOI: 10.1002/smll.202101070.
[9] WANG J L, WANG S Z. A critical review on graphitic carbon nitride(g-C3N4)-based materials: preparation, modification and environmental application[J]. Coordination Chemistry Reviews, 2022, 453: 214338. DOI: 10.1016/j.ccr.2021.214338.
[10] TAKANABE K. Photocatalytic water splitting: quantitative approaches toward photocatalyst by design[J]. ACS Catalysis, 2017, 7: 8006-8022. DOI: 10.1021/acscatal.7b02662.
[11] XU Q L, CHENG B, YU J G, et al. Making Co-condensed amorphous carbon/g-C3N4 composites with improved visible-light photocatalytic H2-production performance using Pt as cocatalyst[J]. Carbon, 2017, 118: 241-249. DOI:10.1016/j.carbon.2017.03.052.
[12] ZHU Y Q, WANG T, XU T, et al. Size effect of Pt Co-catalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution[J]. Applied Surface Science, 2019, 464: 36-42. DOI: 10.1016/j.apsusc.2018.09.061.
[13] GÜY N. Directional transfer of photocarriers on CdS/g-C3N4 heterojunction modified with Pd as a cocatalyst for synergistically enhanced photocatalytic hydrogen production[J]. Applied Surface Science, 2020, 522: 146442. DOI: 10.1016/j.apsusc.2020.146442.
[14] MASIH D, MA Y Y, ROHANI S. Graphitic C3N4 based noble-metal-free photocatalyst systems: a review[J]. Applied Catalysis B: Environmental, 2017, 206(5): 556-588. DOI:10.1016/j.apcatb.2017.01.061.
[15] 郭俊兰,梁英华,王欢,等.光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114. DOI: 10.7536/PC200803.
[16] ZHOU X F, TIAN Y H, LUO J, et al. MoC quantum Dots@N-doped-carbon for low-cost and efficient hydrogen evolution reaction: from electrocatalysis to photocatalysis[J]. Advanced Functional Materials, 2022, 32(27): 2201518. DOI: 10.1002/adfm.202201518.
[17] ZHOU X F, WANG P, LI M, et al. Synergistic effect of phosphorus doping and MoS2 Co-catalysts on g-C3N4 photocatalysts for enhanced solar water splitting[J]. Journal of Materials Science & Technology, 2023, 158: 171-179. DOI: 10.1016/j.jmst.2023.02.041.
[18] ZHOU X F, ZHU Y T, GAO Q Z, et al. Modified graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution[J]. ChemSusChem, 2019, 12(22): 4996-5006. DOI: 10.1002/cssc.201901960.
[19] LIN Z Z, WANG X C. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis[J]. Angewandte Chemie International Edition, 2013, 52(6): 1735-8. DOI: 10.1002/anie.201209017.
[20] ZHOU X F, FANG Y X, CAI X, et al. In situ photodeposited construction of Pt-CdS/g-C3N4-MnOx composite photocatalyst for efficient visible-light-driven overall water splitting[J]. ACS Applied Materials and Interfaces, 2020, 12(18): 20579-20588. DOI: 10.1021/acsami.0c04241.
[21] WANG C X, ZHANG W J, FAN J, et al. S-scheme bimetallic sulfide ZnCo2S4/g-C3N4 heterojunction for photocatalytic H2 evolution[J]. Ceramics International, 2021, 47(21): 30194-30202. DOI: 10.1016/j.ceramint.2021.07.199.
[22] ZHANG Y P, JIN Z L, LUAN A, et al. Charge transfer behaviors over MOF-5@g-C3N4 with NixMo1-xS2 modification[J]. International Journal of Hydrogen Energy, 2018, 43(21): 9914-9923. DOI: 10.1016/j.ijhydene.2018.04.071.
[23] XU X J, SI Z C, LIU L P, et al. CoMoS2/rGO/C3N4 ternary heterojunctions catalysts with high photocatalytic activity and stability for hydrogen evolution under visible light irradiation[J]. Applied Surface Science, 2018, 435: 1296-1306. DOI: 10.1016/j.apsusc.2017.12.001.
[24] FAN K, JIN Z L, YANG H, et al. Promotion of the excited electron transfer over Ni- and Co-sulfide co-doped g-C3N4 photocatalyst (g-C3N4/NixCo1-xS2) for hydrogen production under visible light irradiation[J]. Scientific Reports, 2017, 7(1): 7710. DOI: 10.1038/s41598-017-08163-y.
[25] JIANG K R, IQBAL W, YANG B, et al. Noble metal-free NiCo2S4/CN sheet-on-sheet heterostructure for highly efficient visible-light-driven photocatalytic hydrogen evolution[J]. Journal of Alloys and Compounds, 2021, 853: 157284. DOI: 10.1016/j.jallcom.2020.157284.
[26] JIANG L S, WANG K, WU X Y, et al. Amorphous bimetallic cobalt nickel sulfide cocatalysts for significantly boosting photocatalytic hydrogen evolution performance of graphitic carbon nitride: efficient interfacial charge transfer[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26898-26908. DOI: 10.1021/acsami.9b07311.
[27] DONG J, SHI Y, HUANG C P, et al. A new and stable Mo-Mo2C modified g-C3N4 photocatalyst for efficient visible light photocatalytic H2 production[J]. Applied Catalysis B: Environmental, 2019, 243: 27-35. DOI: 10.1016/j.apcatb.2018.10.016.
[28] GELDERMAN K, LEE L, DONNE S W. Flat-band potential of a semiconductor: using the mott-schottky equation[J]. Journal of Chemical Education, 2007, 84: 685. DOI: 10.1021/ed084p685.
[29] ISHIKAWA A, TAKATA T, KONDO J N, et al. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ≤650 nm)[J]. Journal of the American Chemical Society, 2002, 124(45): 13547-13553. DOI: 10.1021/ja0269643.
[30] LI P, ZHUANG Z H, DU C, et al. Insights into the Mo-doping effect on the electrocatalytic performance of hierarchical CoxMoyS nanosheet arrays for hydrogen generation and urea oxidation[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40194-40203. DOI:10.1021/acsami.0c06716.
[1] 刘俊琛, 黄浩然, 葛春玉, 王红强, 方岳平. 磷掺杂与MoS2光沉积共同促进CdS光催化产氢[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 445-456.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁静静, 郑宇钊, 徐晨枫, 殷婷婕. 非内吞依赖型生物大分子药物胞质递送策略研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 1 -8 .
[2] 涂广升, 孔咏骏, 宋哲超, 叶康. 密文域可逆信息隐藏研究进展及技术难点分析[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 1 -15 .
[3] 杨杨阳, 朱震霆, 杨翠萍, 李世豪, 张舒, 范秀磊, 万蕾. 基于文献计量学分析的剩余污泥厌氧消化预处理研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 16 -29 .
[4] 许伦辉, 李金龙, 李若南, 陈俊宇. 基于动态生成对抗网络的路网缺失交通数据修复[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 30 -40 .
[5] 杨海, 谢亚琴. 基于Floyd算法的5G基站区域储能分配策略[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 41 -54 .
[6] 闫文文, 文中, 王爽, 李国祥, 王博宇, 吴艺. 基于AA-CAES电站和综合需求响应的供暖期弃风消纳策略[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 55 -68 .
[7] 甘友春, 王灿, 贺旭辉, 张羽, 张雪菲, 王帆, 喻亚洲. 考虑光热电站和柔性负荷的电氢热综合能源系统联合优化运行[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 69 -83 .
[8] 王旭阳, 王常瑞, 张金峰, 邢梦怡. 基于跨模态交叉注意力网络的多模态情感分析方法[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 84 -93 .
[9] 王卫舵, 王以松, 杨磊. 云资源调度的回答集程序描述性求解[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 94 -104 .
[10] 余谦, 陈庆锋, 何乃旭, 韩宗钊, 卢家辉. 基于矩阵运算加速的改进社区发现遗传算法[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 105 -119 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发