广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (1): 1-8.doi: 10.16088/j.issn.1001-6600.2023042406

• 综述 •    下一篇

非内吞依赖型生物大分子药物胞质递送策略研究进展

袁静静1, 郑宇钊1, 徐晨枫2*, 殷婷婕1*   

  1. 1.中国药科大学 药学院,江苏 南京 210000;
    2.华中科技大学同济医学院附属协和医院 药学部,湖北 武汉 430022
  • 收稿日期:2023-04-24 修回日期:2023-06-19 出版日期:2024-01-25 发布日期:2024-01-19
  • 通讯作者: 徐易枫(1989—),男,安徽安庆人,华中科技大学同济医学院附属协和医院副主任药师。E-mail:xuchenfengcpu@126.com; 殷婷婕(1989—),女,江苏常州人,中国药科大学副教授,博导。E-mail:cookey_89ytj@163.com
  • 基金资助:
    国家自然科学基金(81972835);国家自然科学青年科学基金(82003693)

Advances in Cytoplasmic Delivery Strategies for Non-Endocytosis-Dependent Biomolecules

YUAN Jingjing1, ZHENG Yuzhao1, XU Chenfeng2*, YIN Tingjie1*   

  1. 1. School of Pharmacy, China Pharmaceutical University, Nanjing Jiangsu 210000, China;
    2. Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430022, China
  • Received:2023-04-24 Revised:2023-06-19 Online:2024-01-25 Published:2024-01-19

摘要: 生物大分子药物由于具有高效、高特异性等优点,已成为新一代治疗药物的重要组成部分,但其分子稳定性差、易被酶解、难以跨越生物膜。传统的生物大分子药物纳米递送策略的有效性主要受限于溶酶体逃逸效率低,针对性开发非内吞依赖型的胞质直接递送策略具有重要意义。本文综述细胞穿透肽、低pH插入肽、清道夫受体介导的非内吞作用、膜融合、内质网途径、硫醇介导、基于液-液相分离技术的非内体捕获型生物大分子药物胞内递送策略的效应机制和研究进展,并分析了技术转化难点。

关键词: 生物大分子药物, 细胞穿透肽, 巯醇, 入胞, 内质网途径, 膜融合

Abstract: Biomacromolecular drugs have become an important component of the new generation of therapeutic drugs due to their high efficiency and specificity. However, their molecular stability are poor, and they are prone to enzymatic hydrolysis, and are difficult to cross biofilms. The effectiveness of traditional nano delivery strategies for biomacromolecule drugs is mainly limited by the low escape efficiency of lysosome. It is of great significance to develop endocytosis independent direct cytoplasmic delivery strategies. This paper reviews the effect mechanism and research progress of cell penetrating peptide, low pH insertion peptide, scavenger receptor mediated non endocytosis, membrane fusion, endoplasmic reticulum pathway, mercaptan mediated, non endosome capture based intracellular delivery strategy of biomacromolecule drugs based on liquid-liquid phase separation technology, and analyzes the difficulties in technology transformation.

Key words: biomacromolecular drugs, cell penetrating peptide, mercaptol mediated entry into cells, endoplasmic reticulum pathway, membrane fusion

中图分类号:  R943

[1] TAMEMOTO N, AKISHIBA M, SAKAMOTO K, et al. Rational design principles of attenuated cationic lytic peptides for intracellular delivery of biomacromolecules[J]. Molecular Pharmaceutics, 2020, 17(6): 2175-2185. DOI: 10.1021/acs.molpharmaceut.0c00312.
[2] HE W, XING X Y, WANG X L, et al. Nanocarrier-mediated cytosolic delivery of biopharmaceuticals[J]. Advanced Functional Materials, 2020, 30(37): 1910566. DOI: 10.1002/adfm.201910566.
[3] SAKAMOTO K, AKISHIBA M, IWATA T, et al. Optimizing charge switching in membrane lytic peptides for endosomal release of biomacromolecules[J]. Angewandte Chemie International Edition, 2020, 59(45): 19990-19998. DOI: 10.1002/anie.202005887.
[4] TAI W Y, ZHAO P F, GAO X H. Cytosolic delivery of proteins by cholesterol tagging[J]. Science Advances, 2020, 6(25): eabb0310. DOI: 10.1126/sciadv.abb0310.
[5] DU S B, LIEW S S, LI L, et al. Bypassing endocytosis: direct cytosolic delivery of proteins[J]. Journal of the American Chemical Society, 2018, 140(47): 15986-15996. DOI: 10.1021/jacs.8b06584.
[6] CHIPER M, NIEDERREITHER K, ZUBER G. Transduction methods for cytosolic delivery of proteins and bioconjugates into living cells[J]. Advanced Healthcare Materials, 2018, 7(6):e1701040. DOI: 10.1002/adhm.201701040.
[7] ZHANG X S, LEI T, DU H W. Prospect of cell penetrating peptides in stem cell tracking[J]. Stem Cell Research & Therapy, 2021, 12(1): 457. DOI: 10.1186/s13287-021-02522-3.
[8] GUIDOTTI G, BRAMBILLA L, ROSSI D. Cell-penetrating peptides: from basic research to clinics[J]. Trends in Pharmacological Sciences, 2017, 38(4): 406-424. DOI: 10.1016/j.tips.2017.01.003.
[9] SINGH T, MURTHY A S N, YANG H J, et al. Versatility of cell-penetrating peptides for intracellular delivery of siRNA[J]. Drug Delivery, 2018, 25(1): 1996-2006. DOI: 10.1080/10717544.2018.1543366.
[10] DERAKHSHANKHAH H, JAFARI S. Cell penetrating peptides: a concise review with emphasis on biomedical applications[J]. Biomedicine & Pharmacotherapy, 2018, 108: 1090-1096. DOI: 10.1016/j.biopha.2018.09.097.
[11] DOUGHERTY P G, SAHNI A, PEI D H. Understanding cell penetration of cyclic peptides[J].Chemical Reviews, 2019, 119(17): 10241-10287. DOI: 10.1021/acs.chemrev.9b00008.
[12] TIAN Y, ZHOU S B. Advances in cell penetrating peptides and their functionalization of polymeric nanoplatforms for drug delivery[J]. Wiley Interdisciplinary Reviews Nanomedicine & Nanobiotechnology, 2021, 13(2): e1668. DOI: 10.1002/wnan.1668.
[13] 夏艳梅,于思远,杨晗,等.细胞穿膜肽介导生物大分子入胞机制研究进展[J].中国生物工程杂志,2019,39(10):82-89.DOI: 10.13523/j.cb.20191010.
[14] KONATE K, CROMBEZ L, DESHAYES S, et al. Insight into the cellular uptake mechanism of a secondary amphipathic cell-penetrating peptide for siRNA delivery[J]. Biochemistry, 2010, 49(16): 3393-3402. DOI: 10.1021/bi901791x.
[15] YU Z L, ZHANG X J, PEI X, et al. Antibody-siRNA conjugates (ARCs) using multifunctional peptide as a tumor enzyme cleavable linker mediated effective intracellular delivery of siRNA[J]. International Journal of Pharmaceutics, 2021, 606: 120940. DOI: 10.1016/j.ijpharm.2021.120940.
[16] RAHMAN A, MATTHEWS M A, NOWELL C J, et al. Enhanced nitric oxide production by macrophages treated with a cell-penetrating peptide conjugate[J]. Bioorganic Chemistry, 2022, 123:105763. DOI: 10.1016/j.bioorg.2022.105763.
[17] LI M, EHLERS M, SCHLESIGER S, et al. Incorporation of a non-natural arginine analogue into a cyclic peptide leads to formation of positively charged nanofibers capable of gene transfection[J]. Angewandte Chemie International Edition, 2016, 55(2): 598-601. DOI: 10.1002/anie.201508714.
[18] WYATT L C, LEWIS J S, ANDREEV O A, et al. Applications of pHLIP technology for cancer imaging and therapy[J]. Trends in Biotechnology, 2017, 35(7): 653-664. DOI: 10.1016/j.tibtech.2017.03.014.
[19] 贾学丽,张佳,赵婷,等.低pH插入肽研究概况[J].药学学报,2018,53(3):375-382.DOI: 10.16438/j.0513-4870.2017-0830.
[20] SVORONOS A A, BAHAL R, PEREIRA M C, et al. Tumor-targeted, cytoplasmic delivery of large, polar molecules using a pH-low insertion peptide[J]. Molecular Pharmaceutics, 2020, 17(2): 461-471. DOI: 10.1021/acs.molpharmaceut.9b00883.
[21] GOLIJANIN J, AMIN A, MOSHNIKOVA A, et al. Targeted imaging of urothelium carcinoma in human bladders by an ICG pHLIP peptide ex vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11829-11834. DOI: 10.1073/pnas.1610472113.
[22] DING G B, MA X H, MENG X, et al. pH low insertion peptide (pHLIP)-decorated polymeric nanovehicle for efficient and pH-responsive siRNA translocation[J]. Materials & Design, 2021, 212:110197. DOI: 10.1016/j.matdes.2021.110197.
[23] RESHETNYAK Y K, ANDREEV O A, LEHNERT U, et al. Translocation of molecules into cells by pH-dependent insertion of a transmembrane helix[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(17): 6460-6465. DOI: 10.1073/pnas.0601463103.
[24] ZHAO Z N, LI C Y, SONG B, et al. pH low insertion peptide mediated cell division cycle-associated protein 1-siRNA transportation for prostatic cancer therapy targeted to the tumor microenvironment[J]. Biochemical and Biophysical Research Communications, 2018, 503(3): 1761-1767. DOI: 10.1016/j.bbrc.2018.07.110.
[25] DING Y, WANG Y Z, ZHOU J P, et al. Direct cytosolic siRNA delivery by reconstituted high density lipoprotein for target-specific therapy of tumor angiogenesis[J]. Biomaterials, 2014, 35(25): 7214-7227. DOI: 10.1016/j.biomaterials.2014.05.009.
[26] DING G B, ZHU C C, WANG Q, et al. Molecularly engineered tumor acidity-responsive plant toxin gelonin for safe and efficient cancer therapy[J].Bioactive materials, 2022,18:42-55. DOI: 10.1016/j.bioactmat.2022.02.001.
[27] ZHOU J, SHAO Z T, LIU J, et al. From endocytosis to nonendocytosis: the emerging era of gene delivery[J]. ACS Applied Bio Materials, 2020, 3(5): 2686-2701. DOI: 10.1021/acsabm.9b01131.
[28] CHEN X H, MANGALA L S, MOOBERRY L, et al. Identifying and targeting angiogenesis-related micrornas in ovarian cancer[J]. Oncogene, 2019, 38(33): 6095-6108. DOI: 10.1038/s41388-019-0862-y.
[29] HAN Y, DING B X, ZHAO Z Q, et al. Immune lipoprotein nanostructures inspired relay drug delivery for amplifying antitumor efficiency[J]. Biomaterials, 2018, 185: 205-218. DOI: 10.1016/j.biomaterials.2018.09.016.
[30] MAZUR F, CHANDRAWATI R. Membrane fusion models for bioapplications[J]. ChemNanoMat, 2021, 7(3): 223-237. DOI: 10.1002/cnma.202000582.
[31] ROBSON MARSDEN H, KOROBKO A V, ZHENG T T, et al. Controlled liposome fusion mediated by SNARE protein mimics[J]. Biomaterials Science, 2013, 1(10): 1046-1054. DOI: 10.1039/c3bm60040h.
[32] AL-JAMAL W T, KOSTARELOS K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine[J]. Accounts of Chemical Research, 2011, 44(10): 1094-1104. DOI: 10.1021/ar200105p.
[33] REY F A, LOK S M. Common features of enveloped viruses and implications for immunogen design for next-generation vaccines[J]. Cell, 2018, 172(6): 1319-1334. DOI: 10.1016/j.cell.2018.02.054.
[34] KOLAŠINAC R, KLEUSCH C, BRAUN T, et al. Deciphering the functional composition of fusogenic liposomes[J]. International Journal of Molecular Sciences, 2018, 19(2): 346. DOI: 10.3390/ijms19020346.
[35] CSISZÁR A, HERSCH N, DIELUWEIT S, et al. Novel fusogenic liposomes for fluorescent cell labeling and membrane modification[J]. Bioconjugate Chemistry, 2010, 21(3): 537-543. DOI: 10.1021/bc900470y.
[36] DENG H Z, SONG K, ZHAO X F, et al. Tumor microenvironment activated membrane fusogenic liposome with speedy antibody and doxorubicin delivery for synergistic treatment of metastatic tumors[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9315-9326. DOI: 10.1021/acsami.6b14683.
[37] HA D, YANG N N, NADITHE V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: urrent perspectives and future challenges[J]. Acta Pharmaceutica Sinica B, 2016, 6(4): 287-296. DOI: 10.1016/j.apsb.2016.02.001.
[38] AKISHIBA M, FUTAKI S. Inducible membrane permeabilization by attenuated lytic peptides: a new concept for accessing cell interiors through ruffled membranes[J]. Molecular Pharmaceutics, 2019, 16(6): 2540-2548. DOI: 10.1021/acs.molpharmaceut.9b00156.
[39] YUAN X L, QIN B, YIN H, et al. Virus-like nonvirus cationic liposome for efficient gene delivery via endoplasmic reticulum pathway[J]. ACS Central Science, 2020, 6(2): 174-188. DOI: 10.1021/acscentsci.9b01052.
[40] ZHOU Z X, LIU X R, ZHU D C, et al. Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration[J]. Advanced Drug Delivery Reviews, 2017, 115: 115-154. DOI: 10.1016/j.addr.2017.07.021.
[41] QIU C, HAN H H, SUN J, et al. Regulating intracellular fate of siRNA by endoplasmic reticulum membrane-decorated hybrid nanoplexes[J]. Nature Communications, 2019, 10(1): 2702. DOI: 10.1038/s41467-019-10562-w.
[42] TORRES A G, GAIT M J. Exploiting cell surface thiols to enhance cellular uptake[J]. Trends in Biotechnology, 2012, 30(4): 185-190. DOI: 10.1016/j.tibtech.2011.12.002.
[43] CHUARD N, GASPARINI G, MOREAU D, et al. Strain-promoted thiol-mediated cellular uptake of giant substrates: Liposomes and polymersomes[J]. Angewandte Chemie International Edition, 2017, 56(11): 2947-2950. DOI: 10.1021/anie.201611772.
[44] BANG E K, GASPARINI G, MOLINARD G, et al. Substrate-initiated synthesis of cell-penetrating poly (disulfide)s[J]. Journal of the American Chemical Society, 2013, 135(6): 2088-2091. DOI: 10.1021/ja311961k.
[45] GASPARINI G, BANG E K, MOLINARD G, et al. Cellular uptake of substrate-initiated cell-penetrating poly (disulfide)s[J]. Journal of the American Chemical Society, 2014, 136(16): 6069-6074. DOI: 10.1021/ja501581b.
[46] FU J Q, YU C M, LI L, et al. Intracellular delivery of functional proteins and native drugs by cell-penetrating poly (disulfide)s[J]. Journal of the American Chemical Society, 2015, 137(37): 12153-12160. DOI: 10.1021/jacs.5b08130.
[47] ZHOU J, SUN L Q, WANG L P, et al. Self-assembled and size-controllable oligonucleotide nanospheres for effective antisense gene delivery through an endocytosis-independent pathway[J]. Angewandte Chemie International Edition, 2019, 58(16): 5236-5240. DOI: 10.1002/anie.201813665.
[48] YU C M, QIAN L H, GE J Y, et al. Cell-penetrating poly(disulfide) assisted intracellular delivery of mesoporous silica nanoparticles for inhibition of mir-21 function and detection of subsequent therapeutic effects[J]. Angewandte Chemie International Edition, 2016, 55(32): 9272-9276. DOI: 10.1002/anie.201602188.
[49] YANG W, LIU X C, LI H F, et al. Disulfide-containing molecular sticker assists cellular delivery of DNA nanoassemblies by bypassing endocytosis[J]. CCS Chemistry, 2021, 3(3): 1178-1186. DOI: 10.31635/ccschem.020.202000250.
[50] QIAN L H, FU J Q, YUAN P Y, et al. Intracellular delivery of native proteins facilitated by cell-penetrating poly (disulfide)s[J]. Angewandte Chemie International Edition, 2018, 57(6): 1532-1536. DOI: 10.1002/anie.201711651.
[51] CAI H, GABRYELCZYK B, MANIMEKALAI M S S, et al. Self-coacervation of modular squid beak proteins: a comparative study[J]. Soft Matter, 2017, 13(42): 7740-7752. DOI: 10.1039/c7sm01352c.
[52] LIM Z W, PING Y, MISEREZ A. Glucose-responsive peptide coacervates with high encapsulation efficiency for controlled release of insulin[J]. Bioconjugate Chemistry, 2018, 29(7): 2176-2180. DOI: 1021/acs.bioconjchem.8b00369.
[53] SUN Y, LAU S Y, LIM Z W, et al. Phase-separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics[J]. Nature Chemistry, 2022, 14(3): 274-283. DOI: 10.1038/s41557-021-00854-4.
[1] 吴睿麒, 梁晓龙. 超声介导药物递送研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 271-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗云演, 李容正, 李冰, 丁晨旭. 响应面优化多刺绿绒蒿总生物碱提取工艺[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 84 -90 .
[2] 董淑龙, 马姜明, 辛文杰. 景观视觉评价研究进展与趋势——基于CiteSpace的知识图谱分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 1 -13 .
[3] 郭嘉梁, 靳婷. 基于语义增强的多模态情感分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 14 -25 .
[4] 吴正清, 曹晖, 刘宝锴. 基于注意力卷积神经网络的中文虚假评论检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 26 -36 .
[5] 梁正友, 蔡俊民, 孙宇, 陈磊. 结合残差动态图卷积与特征强化的点云分类[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 37 -48 .
[6] 欧阳舒歆, 王洺钧, 荣垂田, 孙华波. 基于改进LSTM的多维QAR数据异常检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 49 -60 .
[7] 李依洋, 曾才斌, 黄在堂. 分数Brown运动驱动的具有壁附着的恒化器模型的随机吸引子[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 61 -68 .
[8] 李鹏博, 李永祥. 外部区域上p-Laplace方程的径向对称解[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 69 -75 .
[9] 吴子弦, 成军, 符坚铃, 周心雯, 谢佳龙, 宁全. 基于PI的Semi-Markovian电力系统事件触发控制设计分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 76 -85 .
[10] 程蕾, 闫普选, 杜博豪, 叶思, 邹华红. MOF-2的水相合成及其热稳定和介电性能研究[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 86 -95 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发