广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 271-285.doi: 10.16088/j.issn.1001-6600.2022012804

• 综述 • 上一篇    下一篇

超声介导药物递送研究进展

吴睿麒, 梁晓龙*   

  1. 北京大学第三医院 超声科, 北京 100191
  • 收稿日期:2022-01-28 修回日期:2022-04-20 出版日期:2022-09-25 发布日期:2022-10-18
  • 通讯作者: 梁晓龙(1982—), 男, 广东饶平人, 北京大学第三医院研究员, 博导。E-mail: xiaolong_liang@bjmu.edu.cn
  • 基金资助:
    国家自然科学基金(81822022, 81771846)

Research Advances in Ultrasound Mediated Drug Delivery

WU Ruiqi, LIANG Xiaolong*   

  1. Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
  • Received:2022-01-28 Revised:2022-04-20 Online:2022-09-25 Published:2022-10-18

摘要: 如何实现药物靶向高效递送是目前的研究热点。超声具有无创、无辐射、操作简单、价格低廉等优点,临床诊断利用了超声波的反射、折射和衍射原理。由于具有机械效应和热效应,超声也是一种高效的药物控释外源性刺激方法,可以提高病变组织和细胞膜的通透性,促进细胞对药物的摄取,在此基础上发展的超声介导药物递送系统,已经成为一种高效、无创的递送技术。通过超声辐照肿瘤区域,实现药物的定点定量释放,提高局部药物浓度,改善疗效。超声联合各类载体,诸如超声微泡、脂质体等在药物靶向递送方面具有极大的临床转化价值。本文从超声增强药物递送机制、超声响应载体、超声增强药物递送效果及其临床应用前景等方面进行综述。

关键词: 超声, 药物递送, 微纳米材料, 超声分子影像, 靶向治疗, 临床应用

Abstract: How to achieve efficient and targeted drug delivery is a current research hotspot. Ultrasound has the advantages of non-invasiveness, non-radiation, simple operation and low price. Clinical diagnosis uses the principles of reflection, refraction and diffraction of ultrasound. Attributed to its mechanical and thermal effects, ultrasound is also an efficient exogenous stimulation method for controlling drug release, which can improve the permeability of diseased tissues and cell membranes, and promote the uptake of drugs by cells. On this basis, the ultrasound mediated drug delivery has become an efficient and noninvasive delivery technology. The targeted and quantitative release of drugs can be realized by irradiating the tumor area with ultrasound, so as to increase the local drug concentration and thus improve the curative effect. Ultrasound combined with various carriers, such as ultrasonic microbubbles, liposomes and so on, has great clinical translation value in drug targeted delivery. This article will review ultrasound-enhanced drug delivery mechanism, ultrasound responsive carriers, the effect of ultrasound-enhanced drug delivery and its clinical application prospects.

Key words: ultrasound, drug delivery, micro-nano materials, ultrasound molecular imaging, targeted therapy, clinical application

中图分类号: 

  • R943
[1]TACHIBANA K, TACHIBANA S. The use of ultrasound for drug delivery[J]. Echocardiography, 2001, 18(4): 323-328.
[2]杨国良,杨君,唐君辉,等. 精准医疗时代下超声靶向微泡破坏技术研究与应用[J]. 医学综述, 2021, 27(24): 4939-4945.
[3]ROOVERS S, SEGERS T, LAJOINIE G, et al. The role of ultrasound-driven microbubble dynamics in drug delivery: from microbubble fundamentals to clinical translation[J]. Langmuir, 2019, 35(31): 10173-10191.
[4]NAKAYA H, SHIMIZU T, ISOBE K, et al. Microbubble-enhanced ultrasound exposure promotes uptake of methotrexate into synovial cells and enhanced antiinflammatory effects in the knees of rabbits with antigen-induced arthritis[J]. Arthritis and Rheumatism, 2005, 52(8): 2559-2566.
[5]ZHAO R R, LIANG X L, ZHAO B, et al. Ultrasound assisted gene and photodynamic synergistic therapy with multifunctional FOXA1-siRNA loaded porphyrin microbubbles for enhancing therapeutic efficacy for breast cancer[J]. Biomaterials, 2018, 173: 58-70.
[6]CHEN M, LIANG X L, GAO C, et al. Ultrasound triggered conversion of porphyrin/camptothecin-fluoroxyuridine triad microbubbles into nanoparticles overcomes multidrug resistance in colorectal cancer[J]. ACS Nano, 2018, 12(7): 7312-7326.
[7]RWEI A Y, PARIS J L, WANG B, et al. Ultrasound-triggered local anaesthesia[J]. Nature Biomedical Engineering, 2017, 1: 644-653.
[8]QU F, WANG P, ZHANG K, et al. Manipulation of mitophagy by “all-in-one” nanosensitizer augments sonodynamic glioma therapy[J]. Autophagy, 2020, 16(8): 1413-1435.
[9]HUANG S L. Liposomes in ultrasonic drug and gene delivery[J]. Advanced Drug Delivery Reviews, 2008, 60(10): 1167-1176.
[10]HUANG S L, MCPHERSON D D, MACDONALD R C. A method to co-encapsulate gas and drugs in liposomes for ultrasound-controlled drug delivery[J]. Ultrasound in Medicine and Biology, 2008, 34(8): 1272-1280.
[11]SUZUKI R, TAKIZAWA T, NEGISHI Y, et al. Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound[J]. Journal of Controlled Release, 2007, 117(1): 130-136.
[12]NEGISHI Y, ENDO Y, FUKUYAMA T, et al. Delivery of siRNA into the cytoplasm by liposomal bubbles and ultrasound[J]. Journal of Controlled Release, 2008, 132(2): 124-130.
[13]SIRSI S R, BORDEN M A. State-of-the-art materials for ultrasound-triggered drug delivery[J]. Advanced Drug Delivery Reviews, 2014, 72: 3-14.
[14]RAPOPORT N. Ultrasound-mediated micellar drug delivery[J]. International Journal of Hyperthermia, 2012, 28(4): 374-385.
[15]GAO Z G, FAIN H D, RAPOPORT N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound[J]. Journal of Controlled Release, 2005, 102(1): 203-222.
[16]GUPTA R, SHEA J, SCAFE C, et al. Polymeric micelles and nanoemulsions as drug carriers: therapeutic efficacy, toxicity, and drug resistance[J]. Journal of Controlled Release, 2015, 212: 70-77.
[17]FERRI S, WU Q, DE GRAZIA A, et al. Tailoring the size of ultrasound responsive lipid-shelled nanodroplets by varying production parameters and environmental conditions[J]. Ultrasonics Sonochemistry, 2021, 73: 105482.
[18]RAPOPORT N, NAM K H, GUPTA R, et al. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions[J]. Journal of Controlled Release, 2011, 153(1): 4-15.
[19]LIU X X, SHI D D, GUO L, et al. Echogenic, ultrasound-sensitive chitosan nanodroplets for spatiotemporally DKK-2 controlled gene delivery to prostate cancer cells[J]. International Journal of Nanomedicine, 2021, 16: 421-432.
[20]DARAEE H, EATEMADI A, ABBASI E, et al. Application of gold nanoparticles in biomedical and drug delivery[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2016, 44(1): 410-422.
[21]DONG X, LIU H J, FENG H Y, et al. Enhanced drug delivery by nanoscale integration of a nitric oxide donor to induce tumor collagen depletion[J]. Nano Letters, 2019, 19(2): 997-1008.
[22]KANG B, ZHENG M B, SONG P, et al. Subcellular-scale drug transport via ultrasound-degradable mesoporous nanosilicon to bypass cancer drug resistance[J]. Small, 2017, 13(20): 1604228.
[23]LIN F C, XIE Y J, DENG T, et al. Magnetism, ultrasound, and light-stimulated mesoporous silica nanocarriers for theranostics and beyond[J]. Journal of the American Chemical Society, 2021, 143(16): 6025-6036.
[24]QI R Q, LIU W, WANG D Y, et al. Development of local anesthetic drug delivery system by administration of organo-silica nanoformulations under ultrasound stimuli: in vitro and in vivo investigations[J]. Drug Delivery, 2021, 28(1): 54-62.
[25]SHAKERI-ZADEH A, KHOEE S, SHIRAN M B, et al. Synergistic effects of magnetic drug targeting using a newly developed nanocapsule and tumor irradiation by ultrasound on CT26 tumors in BALB/c mice[J]. Journal of Materials Chemistry B, 2015, 3(9): 1879-1887.
[26]CUI H, ZHU Q, XIE Q L, et al. Low intensity ultrasound targeted microbubble destruction assists MSCs delivery and improves neural function in brain ischaemic rats[J]. Journal of Drug Targeting, 2020, 28(3): 320-329.
[27]YANG C P, DU M, YAN F, et al. Focused ultrasound improves NK-92MI cells infiltration into tumors[J]. Frontiers in Pharmacology, 2019, 10: 326.
[28]SNIPSTAD S, BERG S, MØRCH Ý, et al. Ultrasound improves the delivery and therapeutic effect of nanoparticle-stabilized microbubbles in breast cancer xenografts[J]. Ultrasound in Medicine and Biology, 2017, 43(11): 2651-2669.
[29]HO Y J, WANG T C, FAN C H, et al. Spatially uniform tumor treatment and drug penetration by regulating ultrasound with microbubbles[J]. ACS Applied Materials and Interfaces, 2018, 10(21): 17784-17791.
[30]WANG S Y, GUO X X, XIU W J, et al. Accelerating thrombolysis using a precision and clot-penetrating drug delivery strategy by nanoparticle-shelled microbubbles[J]. Science Advances, 2020, 6(31): eaaz8204.
[31]LIANG X L, XU Y X, GAO C, et al. Ultrasound contrast agent microbubbles with ultrahigh loading capacity of camptothecin and floxuridine for enhancing tumor accumulation and combined chemotherapeutic efficacy[J]. NPG Asia Materials, 2018, 10(8): 761-774.
[32]LEE S, HAN H, KOO H, et al. Extracellular matrix remodeling in vivo for enhancing tumor-targeting efficiency of nanoparticle drug carriers using the pulsed high intensity focused ultrasound[J]. Journal of Controlled Release, 2017, 263: 68-78.
[33]ZHANG K, XU H X, JIA X Q, et al. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor[J]. ACS Nano, 2016, 10(12): 10816-10828.
[34]ODA Y, SUZUKI R, OTAKE S, et al. Prophylactic immunization with bubble liposomes and ultrasound-treated dendritic cells provided a four-fold decrease in the frequency of melanoma lung metastasis[J]. Journal of Controlled Release, 2012, 160(2): 362-366.
[35]KOPECHEK J A, MCTIERNAN C F, CHEN X C, et al. Ultrasound and microbubble-targeted delivery of a microRNA inhibitor to the heart suppresses cardiac hypertrophy and preserves cardiac function[J]. Theranostics, 2019, 9(23): 7088-7098.
[36]HUANG H F, LI X L, ZHENG S, et al. Downregulation of renal G protein-coupled receptor kinase type 4 expression via ultrasound-targeted microbubble destruction lowers blood pressure in spontaneously hypertensive rats[J]. Journal of the American Heart Association, 2016, 5(10): e004028.
[37]HERNOT S, KLIBANOV A L. Microbubbles in ultrasound-triggered drug and gene delivery[J]. Advanced Drug Delivery Reviews, 2008, 60(10): 1153-1166.
[38]AGUIAR M O D, TAVARES B G, TSUTSUI J M, et al. Sonothrombolysis improves myocardial dynamics and microvascular obstruction preventing left ventricular remodeling in patients with ST elevation myocardial infarction[J]. Circulation Cardiovascular Imaging, 2020, 13(4): e009536.
[39]KEUM D H, MUN J H, HWANG B W, et al. Smart microbubble eluting theranostic stent for noninvasive ultrasound imaging and prevention of restenosis[J]. Small, 2017, 13(10): 1602925.
[40]LI H R, LU Y K, SUN Y L, et al. Diagnostic ultrasound and microbubbles treatment improves outcomes of coronary no-reflow in canine models by sonothrombolysis[J]. Critical Care Medicine, 2018, 46(9): e912-e920.
[41]GUAN L N, WANG C M, YAN X, et al. A thrombolytic therapy using diagnostic ultrasound combined with RGDS-targeted microbubbles and urokinase in a rabbit model[J]. Scientific Reports, 2020, 10(1): 12511.
[42]ZHONG J Y, SUN Y L, HAN Y, et al. Hydrogen sulfide-loaded microbubbles combined with ultrasound mediate thrombolysis and simultaneously mitigate ischemia-reperfusion injury in a rat hindlimb model[J]. Journal of Thrombosis and Haemostasis, 2021, 19(3): 738-752.
[43]SUN Z X, XIE Y J, LEE R J, et al. Myocardium-targeted transplantation of PHD2 shRNA-modified bone mesenchymal stem cells through ultrasound-targeted microbubble destruction protects the heart from acute myocardial infarction[J]. Theranostics, 2020, 10(11): 4967-4982.
[44]CHEN Y M, ZHANG C X, SHEN S X, et al. Ultrasound-targeted microbubble destruction enhances delayed BMC delivery and attenuates post-infarction cardiac remodelling by inducing engraftment signals[J]. Clinical Science, 2016, 130(23): 2105-2120.
[45]HINKEL R, RAMANUJAM D, KACZMAREK V, et al. AntimiR-21 prevents myocardial dysfunction in a pig model of ischemia/reperfusion injury[J]. Journal of the American College of Cardiology, 2020, 75(15): 1788-1800.
[46]MEAIRS S, ALONSO A. Ultrasound, microbubbles and the blood-brain barrier[J]. Progress in Biophysics and Molecular Biology, 2007, 93(1/3): 354-362.
[47]KONOFAGOU E E, TUNGA Y S, CHOI J, et al. Ultrasound-induced blood-brain barrier opening[J]. Current Pharmaceutical Biotechnology, 2012, 13(7): 1332.
[48]CARPENTIER A, CANNEY M, VIGNOT A, et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound[J]. Science Translational Medicine, 2016, 8(343): 343re2.
[49]SHEIKOV N, MCDANNOLD N, VYKHODTSEVA N, et al. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles[J]. Ultrasound in Medicine and Biology, 2004, 30(7): 979-989.
[50]LIU Y, WANG X, LI J, et al. Sphingosine 1-phosphate liposomes for targeted nitric oxide delivery to mediate anticancer effects against brain glioma tumors[J]. Advanced Materials, 2021, 33(30): e2101701.
[51]ZHAO Y Z, LIN Q, WONG H L, et al. Glioma-targeted therapy using cilengitide nanoparticles combined with UTMD enhanced delivery[J]. Journal of Controlled Release, 2016, 224: 112-125.
[52]CULP W C, FLORES R, BROWN A T, et al. Successful microbubble sonothrombolysis without tissue-type plasminogen activator in a rabbit model of acute ischemic stroke[J]. Stroke, 2011, 42(8): 2280-2285.
[53]RODRÍGUEZ-FRUTOS B, OTERO-ORTEGA L, RAMOS-CEJUDO J, et al. Enhanced brain-derived neurotrophic factor delivery by ultrasound and microbubbles promotes white matter repair after stroke[J]. Biomaterials, 2016, 100: 41-52.
[54]TAN J K Y, PHAM B, ZONG Y J, et al. Microbubbles and ultrasound increase intraventricular polyplex gene transfer to the brain[J]. Journal of Controlled Release, 2016, 231: 86-93.
[55]POON C, PELLOW C, HYNYNEN K. Neutrophil recruitment and leukocyte response following focused ultrasound and microbubble mediated blood-brain barrier treatments[J]. Theranostics, 2021, 11(4): 1655-1671.
[56] Nanotherapy for Alzheimer’s disease and vascular dementia: targeting senile endothelium[J]. Advances in Colloid and Interface Science, 2018, 251: 44-54.
[57]钟林宏,祝兴宇,张渝,等. 超声联合微泡开放血脑屏障的研究进展[J]. 临床超声医学杂志,2021, 23(12): 934-937.
[58]WANG X W, WANG D B, XIA P, et al. Ultrasound-targeted simvastatin-loaded microbubble destruction promotes OA cartilage repair by modulating the cholesterol efflux pathway mediated by PPARγ in rabbits[J]. Bone and Joint Research, 2021, 10(10): 693-703.
[59]XIANG X, LIU H, WANG L Y, et al. Ultrasound combined with SDF-1α chemotactic microbubbles promotes stem cell homing in an osteoarthritis model[J]. Journal of Cellular and Molecular Medicine, 2020, 24(18): 10816-10829.
[60]WANG L Y, ZHU B H, HUANG J B, et al. Ultrasound-targeted microbubble destruction augmented synergistic therapy of rheumatoid arthritis via targeted liposomes[J]. Journal of Materials Chemistry B, 2020, 8(24): 5245-5256.
[61]LI X L, YI W H, JIN A M, et al. Effects of sequentially released BMP-2 and BMP-7 from PELA microcapsule-based scaffolds on the bone regeneration[J]. American Journal of Translational Research, 2015, 7(8): 1417-1428.
[62]GONG Y, LI S J, ZENG W, et al. Controlled in vivo bone formation and vascularization using ultrasound-triggered release of recombinant vascular endothelial growth factor from poly(D,L-lactic-co-glycolicacid) microbubbles[J]. Frontiers in Pharmacology, 2019, 10: 413.
[63]TANG Y, LENG Q, XIANG X, et al. Use of ultrasound-targeted microbubble destruction to transfect IGF-1 cDNA to enhance the regeneration of rat wounded achilles tendon in vivo[J]. Gene Therapy, 2015, 22(8): 610-618.
[1] 马伏花,卢振坤. 基于模糊函数的超声信号高斯模型参数分辨率分析[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 26-31.
[2] 刘茜. 南方红豆杉提取物的抗氧化、抗肿瘤活性研究[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 55-59.
[3] 尹晓刚, 吴小云, 王野, 陈治明, 陈卓. 超声辅助法合成芦竹碱[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 106-111.
[4] 何星存, 唐晓琳, 麦进琳, 陈孟林, 黄智. 增强型铁屑内电解协同超声处理活性翠蓝KN-G[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 230-235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1 -21 .
[2] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22 -34 .
[3] 帖军, 隆娟娟, 郑禄, 牛悦, 宋衍霖. 基于SK-EfficientNet的番茄叶片病害识别模型[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 104 -114 .
[4] 翁烨, 邵德盛, 甘淑. 等式约束病态最小二乘的主成分Liu估计解法[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 115 -125 .
[5] 覃城阜, 莫芬梅. C3-和C4-临界连通图的结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 145 -153 .
[6] 贺青, 刘剑, 韦联福. 微弱电磁信号的物理极限检测:单光子探测器及其研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 1 -23 .
[7] 田芮谦, 宋树祥, 刘振宇, 岑明灿, 蒋品群, 蔡超波. 逐次逼近型模数转换器研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 24 -35 .
[8] 张师超, 李佳烨. 知识矩阵表示[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 36 -48 .
[9] 梁钰婷, 罗玉玲, 张顺生. 基于压缩感知的混沌图像加密研究综述[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 49 -58 .
[10] 郝雅茹, 董力, 许可, 李先贤. 预训练语言模型的可解释性研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 59 -71 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发