|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 271-285.doi: 10.16088/j.issn.1001-6600.2022012804
吴睿麒, 梁晓龙*
WU Ruiqi, LIANG Xiaolong*
摘要: 如何实现药物靶向高效递送是目前的研究热点。超声具有无创、无辐射、操作简单、价格低廉等优点,临床诊断利用了超声波的反射、折射和衍射原理。由于具有机械效应和热效应,超声也是一种高效的药物控释外源性刺激方法,可以提高病变组织和细胞膜的通透性,促进细胞对药物的摄取,在此基础上发展的超声介导药物递送系统,已经成为一种高效、无创的递送技术。通过超声辐照肿瘤区域,实现药物的定点定量释放,提高局部药物浓度,改善疗效。超声联合各类载体,诸如超声微泡、脂质体等在药物靶向递送方面具有极大的临床转化价值。本文从超声增强药物递送机制、超声响应载体、超声增强药物递送效果及其临床应用前景等方面进行综述。
中图分类号:
[1]TACHIBANA K, TACHIBANA S. The use of ultrasound for drug delivery[J]. Echocardiography, 2001, 18(4): 323-328. [2]杨国良,杨君,唐君辉,等. 精准医疗时代下超声靶向微泡破坏技术研究与应用[J]. 医学综述, 2021, 27(24): 4939-4945. [3]ROOVERS S, SEGERS T, LAJOINIE G, et al. The role of ultrasound-driven microbubble dynamics in drug delivery: from microbubble fundamentals to clinical translation[J]. Langmuir, 2019, 35(31): 10173-10191. [4]NAKAYA H, SHIMIZU T, ISOBE K, et al. Microbubble-enhanced ultrasound exposure promotes uptake of methotrexate into synovial cells and enhanced antiinflammatory effects in the knees of rabbits with antigen-induced arthritis[J]. Arthritis and Rheumatism, 2005, 52(8): 2559-2566. [5]ZHAO R R, LIANG X L, ZHAO B, et al. Ultrasound assisted gene and photodynamic synergistic therapy with multifunctional FOXA1-siRNA loaded porphyrin microbubbles for enhancing therapeutic efficacy for breast cancer[J]. Biomaterials, 2018, 173: 58-70. [6]CHEN M, LIANG X L, GAO C, et al. Ultrasound triggered conversion of porphyrin/camptothecin-fluoroxyuridine triad microbubbles into nanoparticles overcomes multidrug resistance in colorectal cancer[J]. ACS Nano, 2018, 12(7): 7312-7326. [7]RWEI A Y, PARIS J L, WANG B, et al. Ultrasound-triggered local anaesthesia[J]. Nature Biomedical Engineering, 2017, 1: 644-653. [8]QU F, WANG P, ZHANG K, et al. Manipulation of mitophagy by “all-in-one” nanosensitizer augments sonodynamic glioma therapy[J]. Autophagy, 2020, 16(8): 1413-1435. [9]HUANG S L. Liposomes in ultrasonic drug and gene delivery[J]. Advanced Drug Delivery Reviews, 2008, 60(10): 1167-1176. [10]HUANG S L, MCPHERSON D D, MACDONALD R C. A method to co-encapsulate gas and drugs in liposomes for ultrasound-controlled drug delivery[J]. Ultrasound in Medicine and Biology, 2008, 34(8): 1272-1280. [11]SUZUKI R, TAKIZAWA T, NEGISHI Y, et al. Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound[J]. Journal of Controlled Release, 2007, 117(1): 130-136. [12]NEGISHI Y, ENDO Y, FUKUYAMA T, et al. Delivery of siRNA into the cytoplasm by liposomal bubbles and ultrasound[J]. Journal of Controlled Release, 2008, 132(2): 124-130. [13]SIRSI S R, BORDEN M A. State-of-the-art materials for ultrasound-triggered drug delivery[J]. Advanced Drug Delivery Reviews, 2014, 72: 3-14. [14]RAPOPORT N. Ultrasound-mediated micellar drug delivery[J]. International Journal of Hyperthermia, 2012, 28(4): 374-385. [15]GAO Z G, FAIN H D, RAPOPORT N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound[J]. Journal of Controlled Release, 2005, 102(1): 203-222. [16]GUPTA R, SHEA J, SCAFE C, et al. Polymeric micelles and nanoemulsions as drug carriers: therapeutic efficacy, toxicity, and drug resistance[J]. Journal of Controlled Release, 2015, 212: 70-77. [17]FERRI S, WU Q, DE GRAZIA A, et al. Tailoring the size of ultrasound responsive lipid-shelled nanodroplets by varying production parameters and environmental conditions[J]. Ultrasonics Sonochemistry, 2021, 73: 105482. [18]RAPOPORT N, NAM K H, GUPTA R, et al. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions[J]. Journal of Controlled Release, 2011, 153(1): 4-15. [19]LIU X X, SHI D D, GUO L, et al. Echogenic, ultrasound-sensitive chitosan nanodroplets for spatiotemporally DKK-2 controlled gene delivery to prostate cancer cells[J]. International Journal of Nanomedicine, 2021, 16: 421-432. [20]DARAEE H, EATEMADI A, ABBASI E, et al. Application of gold nanoparticles in biomedical and drug delivery[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2016, 44(1): 410-422. [21]DONG X, LIU H J, FENG H Y, et al. Enhanced drug delivery by nanoscale integration of a nitric oxide donor to induce tumor collagen depletion[J]. Nano Letters, 2019, 19(2): 997-1008. [22]KANG B, ZHENG M B, SONG P, et al. Subcellular-scale drug transport via ultrasound-degradable mesoporous nanosilicon to bypass cancer drug resistance[J]. Small, 2017, 13(20): 1604228. [23]LIN F C, XIE Y J, DENG T, et al. Magnetism, ultrasound, and light-stimulated mesoporous silica nanocarriers for theranostics and beyond[J]. Journal of the American Chemical Society, 2021, 143(16): 6025-6036. [24]QI R Q, LIU W, WANG D Y, et al. Development of local anesthetic drug delivery system by administration of organo-silica nanoformulations under ultrasound stimuli: in vitro and in vivo investigations[J]. Drug Delivery, 2021, 28(1): 54-62. [25]SHAKERI-ZADEH A, KHOEE S, SHIRAN M B, et al. Synergistic effects of magnetic drug targeting using a newly developed nanocapsule and tumor irradiation by ultrasound on CT26 tumors in BALB/c mice[J]. Journal of Materials Chemistry B, 2015, 3(9): 1879-1887. [26]CUI H, ZHU Q, XIE Q L, et al. Low intensity ultrasound targeted microbubble destruction assists MSCs delivery and improves neural function in brain ischaemic rats[J]. Journal of Drug Targeting, 2020, 28(3): 320-329. [27]YANG C P, DU M, YAN F, et al. Focused ultrasound improves NK-92MI cells infiltration into tumors[J]. Frontiers in Pharmacology, 2019, 10: 326. [28]SNIPSTAD S, BERG S, MØRCH Ý, et al. Ultrasound improves the delivery and therapeutic effect of nanoparticle-stabilized microbubbles in breast cancer xenografts[J]. Ultrasound in Medicine and Biology, 2017, 43(11): 2651-2669. [29]HO Y J, WANG T C, FAN C H, et al. Spatially uniform tumor treatment and drug penetration by regulating ultrasound with microbubbles[J]. ACS Applied Materials and Interfaces, 2018, 10(21): 17784-17791. [30]WANG S Y, GUO X X, XIU W J, et al. Accelerating thrombolysis using a precision and clot-penetrating drug delivery strategy by nanoparticle-shelled microbubbles[J]. Science Advances, 2020, 6(31): eaaz8204. [31]LIANG X L, XU Y X, GAO C, et al. Ultrasound contrast agent microbubbles with ultrahigh loading capacity of camptothecin and floxuridine for enhancing tumor accumulation and combined chemotherapeutic efficacy[J]. NPG Asia Materials, 2018, 10(8): 761-774. [32]LEE S, HAN H, KOO H, et al. Extracellular matrix remodeling in vivo for enhancing tumor-targeting efficiency of nanoparticle drug carriers using the pulsed high intensity focused ultrasound[J]. Journal of Controlled Release, 2017, 263: 68-78. [33]ZHANG K, XU H X, JIA X Q, et al. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor[J]. ACS Nano, 2016, 10(12): 10816-10828. [34]ODA Y, SUZUKI R, OTAKE S, et al. Prophylactic immunization with bubble liposomes and ultrasound-treated dendritic cells provided a four-fold decrease in the frequency of melanoma lung metastasis[J]. Journal of Controlled Release, 2012, 160(2): 362-366. [35]KOPECHEK J A, MCTIERNAN C F, CHEN X C, et al. Ultrasound and microbubble-targeted delivery of a microRNA inhibitor to the heart suppresses cardiac hypertrophy and preserves cardiac function[J]. Theranostics, 2019, 9(23): 7088-7098. [36]HUANG H F, LI X L, ZHENG S, et al. Downregulation of renal G protein-coupled receptor kinase type 4 expression via ultrasound-targeted microbubble destruction lowers blood pressure in spontaneously hypertensive rats[J]. Journal of the American Heart Association, 2016, 5(10): e004028. [37]HERNOT S, KLIBANOV A L. Microbubbles in ultrasound-triggered drug and gene delivery[J]. Advanced Drug Delivery Reviews, 2008, 60(10): 1153-1166. [38]AGUIAR M O D, TAVARES B G, TSUTSUI J M, et al. Sonothrombolysis improves myocardial dynamics and microvascular obstruction preventing left ventricular remodeling in patients with ST elevation myocardial infarction[J]. Circulation Cardiovascular Imaging, 2020, 13(4): e009536. [39]KEUM D H, MUN J H, HWANG B W, et al. Smart microbubble eluting theranostic stent for noninvasive ultrasound imaging and prevention of restenosis[J]. Small, 2017, 13(10): 1602925. [40]LI H R, LU Y K, SUN Y L, et al. Diagnostic ultrasound and microbubbles treatment improves outcomes of coronary no-reflow in canine models by sonothrombolysis[J]. Critical Care Medicine, 2018, 46(9): e912-e920. [41]GUAN L N, WANG C M, YAN X, et al. A thrombolytic therapy using diagnostic ultrasound combined with RGDS-targeted microbubbles and urokinase in a rabbit model[J]. Scientific Reports, 2020, 10(1): 12511. [42]ZHONG J Y, SUN Y L, HAN Y, et al. Hydrogen sulfide-loaded microbubbles combined with ultrasound mediate thrombolysis and simultaneously mitigate ischemia-reperfusion injury in a rat hindlimb model[J]. Journal of Thrombosis and Haemostasis, 2021, 19(3): 738-752. [43]SUN Z X, XIE Y J, LEE R J, et al. Myocardium-targeted transplantation of PHD2 shRNA-modified bone mesenchymal stem cells through ultrasound-targeted microbubble destruction protects the heart from acute myocardial infarction[J]. Theranostics, 2020, 10(11): 4967-4982. [44]CHEN Y M, ZHANG C X, SHEN S X, et al. Ultrasound-targeted microbubble destruction enhances delayed BMC delivery and attenuates post-infarction cardiac remodelling by inducing engraftment signals[J]. Clinical Science, 2016, 130(23): 2105-2120. [45]HINKEL R, RAMANUJAM D, KACZMAREK V, et al. AntimiR-21 prevents myocardial dysfunction in a pig model of ischemia/reperfusion injury[J]. Journal of the American College of Cardiology, 2020, 75(15): 1788-1800. [46]MEAIRS S, ALONSO A. Ultrasound, microbubbles and the blood-brain barrier[J]. Progress in Biophysics and Molecular Biology, 2007, 93(1/3): 354-362. [47]KONOFAGOU E E, TUNGA Y S, CHOI J, et al. Ultrasound-induced blood-brain barrier opening[J]. Current Pharmaceutical Biotechnology, 2012, 13(7): 1332. [48]CARPENTIER A, CANNEY M, VIGNOT A, et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound[J]. Science Translational Medicine, 2016, 8(343): 343re2. [49]SHEIKOV N, MCDANNOLD N, VYKHODTSEVA N, et al. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles[J]. Ultrasound in Medicine and Biology, 2004, 30(7): 979-989. [50]LIU Y, WANG X, LI J, et al. Sphingosine 1-phosphate liposomes for targeted nitric oxide delivery to mediate anticancer effects against brain glioma tumors[J]. Advanced Materials, 2021, 33(30): e2101701. [51]ZHAO Y Z, LIN Q, WONG H L, et al. Glioma-targeted therapy using cilengitide nanoparticles combined with UTMD enhanced delivery[J]. Journal of Controlled Release, 2016, 224: 112-125. [52]CULP W C, FLORES R, BROWN A T, et al. Successful microbubble sonothrombolysis without tissue-type plasminogen activator in a rabbit model of acute ischemic stroke[J]. Stroke, 2011, 42(8): 2280-2285. [53]RODRÍGUEZ-FRUTOS B, OTERO-ORTEGA L, RAMOS-CEJUDO J, et al. Enhanced brain-derived neurotrophic factor delivery by ultrasound and microbubbles promotes white matter repair after stroke[J]. Biomaterials, 2016, 100: 41-52. [54]TAN J K Y, PHAM B, ZONG Y J, et al. Microbubbles and ultrasound increase intraventricular polyplex gene transfer to the brain[J]. Journal of Controlled Release, 2016, 231: 86-93. [55]POON C, PELLOW C, HYNYNEN K. Neutrophil recruitment and leukocyte response following focused ultrasound and microbubble mediated blood-brain barrier treatments[J]. Theranostics, 2021, 11(4): 1655-1671. [56] Nanotherapy for Alzheimer’s disease and vascular dementia: targeting senile endothelium[J]. Advances in Colloid and Interface Science, 2018, 251: 44-54. [57]钟林宏,祝兴宇,张渝,等. 超声联合微泡开放血脑屏障的研究进展[J]. 临床超声医学杂志,2021, 23(12): 934-937. [58]WANG X W, WANG D B, XIA P, et al. Ultrasound-targeted simvastatin-loaded microbubble destruction promotes OA cartilage repair by modulating the cholesterol efflux pathway mediated by PPARγ in rabbits[J]. Bone and Joint Research, 2021, 10(10): 693-703. [59]XIANG X, LIU H, WANG L Y, et al. Ultrasound combined with SDF-1α chemotactic microbubbles promotes stem cell homing in an osteoarthritis model[J]. Journal of Cellular and Molecular Medicine, 2020, 24(18): 10816-10829. [60]WANG L Y, ZHU B H, HUANG J B, et al. Ultrasound-targeted microbubble destruction augmented synergistic therapy of rheumatoid arthritis via targeted liposomes[J]. Journal of Materials Chemistry B, 2020, 8(24): 5245-5256. [61]LI X L, YI W H, JIN A M, et al. Effects of sequentially released BMP-2 and BMP-7 from PELA microcapsule-based scaffolds on the bone regeneration[J]. American Journal of Translational Research, 2015, 7(8): 1417-1428. [62]GONG Y, LI S J, ZENG W, et al. Controlled in vivo bone formation and vascularization using ultrasound-triggered release of recombinant vascular endothelial growth factor from poly(D,L-lactic-co-glycolicacid) microbubbles[J]. Frontiers in Pharmacology, 2019, 10: 413. [63]TANG Y, LENG Q, XIANG X, et al. Use of ultrasound-targeted microbubble destruction to transfect IGF-1 cDNA to enhance the regeneration of rat wounded achilles tendon in vivo[J]. Gene Therapy, 2015, 22(8): 610-618. |
[1] | 马伏花,卢振坤. 基于模糊函数的超声信号高斯模型参数分辨率分析[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 26-31. |
[2] | 刘茜. 南方红豆杉提取物的抗氧化、抗肿瘤活性研究[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 55-59. |
[3] | 尹晓刚, 吴小云, 王野, 陈治明, 陈卓. 超声辅助法合成芦竹碱[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 106-111. |
[4] | 何星存, 唐晓琳, 麦进琳, 陈孟林, 黄智. 增强型铁屑内电解协同超声处理活性翠蓝KN-G[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 230-235. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |