广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 286-299.doi: 10.16088/j.issn.1001-6600.2021122303

• 综述 • 上一篇    下一篇

肿瘤相关巨噬细胞靶向治疗研究进展

刘慧1,2,3, 李丽1,2,3, 刘洋汉1,2,3, 陈振锋1,2,3*   

  1. 1.省部共建药用资源化学与药物分子工程国家重点实验室 (广西师范大学), 广西 桂林 541004;
    2.广西民族药协同创新中心 (广西师范大学), 广西 桂林 541004;
    3.广西师范大学 化学与药学学院, 广西 桂林 541004
  • 收稿日期:2021-12-23 修回日期:2022-04-19 出版日期:2022-09-25 发布日期:2022-10-18
  • 通讯作者: 陈振锋(1969—), 男, 广西北流人, 广西师范大学教授, 博导。E-mail: chenzf@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(22077022)

Advances in Targeted Therapy of Tumor-Associated Macrophages

LIU Hui1,2,3, LI Li1,2,3, LIU Yanghan1,2,3, CHEN Zhenfeng1,2,3*   

  1. 1. State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin Guangxi 541004, China;
    2. Collaborative Innovation Center for Guangxi Ethnic Medicine (Guangxi Normal University), Guilin Guangxi 541004, China;
    3. School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2021-12-23 Revised:2022-04-19 Online:2022-09-25 Published:2022-10-18

摘要: 肿瘤相关巨噬细胞(tumor-associated macrophages, TAMs)是肿瘤微环境(tumor microenvironment, TME)中浸润最丰富的免疫细胞群。临床上,TAMs的数量与多种癌症患者的不良预后密切相关。在肿瘤进展的各个阶段,TAMs发挥着重要作用。多项研究表明,降低TAMs的密度或作用可抑制肿瘤生长。随着TAMs与恶性肿瘤关系逐渐明晰,TAMs已被视为癌症治疗的潜在靶点。本文就TAMs的来源、分类、在人类恶性肿瘤中的作用、靶向TAMs的治疗方法等进行综述。

关键词: 肿瘤相关巨噬细胞, 巨噬细胞, 癌症, 肿瘤微环境, 治疗靶点, 免疫

Abstract: Tumor-associated macrophages(TAMs) are the most widely infiltrating immune cells in the tumor microenvironment(TME). Clinically, the number of TAMs is closely related to the poor prognosis of many cancer patients. TAMs play an important role in various stages of tumor progression. A number of studies have demonstrated that reducing the density or effects of TAMs can inhibit the growth of tumors. As the relationship between TAMs and malignant tumors becomes more and more clear, TAMs has been regarded as a potential target for cancer therapy. This review summarizes the origin, classification, role in tumor growth about TAMs, and the therapeutic strategies of Targeting TAMs.

Key words: tumor-associated macrophages(TAMs), macrophages, cancer, tumor microenvironment(TME), therapeutic target, immunity

中图分类号: 

  • R730.5
[1]VAN FURTH R, COHN Z A. The origin and kinetics of mononuclear phagocytes[J]. Journal of Experimental Medicine, 1968, 128(3): 415-435.
[2]VAN FURTH R, COHN Z A, HIRSCH J G, et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells[J]. Bulletin of the World Health Organisation, 1972, 46(6): 845-852.
[3]GINHOUX F, GRETER M, LEBOEUF M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages[J]. Science, 2010, 330(6005): 841-845.
[4]DAVIES L C, JENKINS S J, ALLEN J E, et al. Tissue-resident macrophages[J]. Nature Immunology, 2013, 14(10):986-995.
[5]MANTOVANI A, SICA A, SOZZANI S, et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunology, 2004, 25: 677-686.
[6]DULUC D, DELNESTE Y, TAN F, et al. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells[J]. Blood, 2007, 110: 4319-4330.
[7]CHENG H Y, WANG Z C, FU L, et al. Macrophage polarization in the development and progression of ovarian cancers: an overview[J]. Frontiers in Oncology, 2019, 9: 421.
[8]POH A R, ERNST M. Targeting macrophages in cancer: from bench to bedside[J]. Frontiers in Oncology, 2018, 8: 49.
[9]XUE J, SCHMIDT S V, SANDER J, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation[J]. Immunity, 2014, 40(2): 274-288.
[10]QIAN B Z, POLLARD J W. Macrophage diversity enhances tumor progression and metastasis[J]. Cell, 2010, 141(1): 39-51.
[11]LAOUI D, VAN OVERMEIRE E, MOVAHEDI K, et al. Mononuclear phagocyte heterogeneity in cancer: different subsets and activation states reaching out at the tumor site[J]. Immunobiology, 2011, 216(11): 1192-1202.
[12]SCHOUPPE E, DE BAETSELIER P, VAN GINDERACHTER J A, et al. Instruction of myeloid cells by the tumor microenvironment: open questions on the dynamics and plasticity of different tumor-associated myeloid cell populations[J]. Oncoimmunology, 2012, 1(7): 1135-1145.
[13]WU T, DAI Y. Tumor microenvironment and therapeutic response[J]. Cancer Letters, 2017, 387: 61-68.
[14]VASILJEVA O, PAPAZOGLOU A, KRÜGER A, et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer[J]. Cancer Research, 2006, 66(10): 5242-5250.
[15]STEENBRUGGE J, BREYNE K, DEMEYERE K, et al. Anti-inflammatory signaling by mammary tumor cells mediates prometastatic macrophage polarization in an innovative intraductal mouse model for triple-negative breast cancer[J]. Journal of Experimental and Clinical Cancer Research, 2018, 37: 191.
[16]WANG R, ZHANG J, CHEN S F, et al. Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression[J]. Lung Cancer, 2011, 74(2): 188-196.
[17]WYCKOFF J B, WANG Y R, LIN E Y, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors[J]. Cancer Research, 2007, 67(6): 2649-2656.
[18]FINKERNAGEL F, REINARTZ S, LIEBER S, et al. The transcriptional signature of human ovarian carcinoma macrophages is associated with extracellular matrix reorganization[J]. Oncotarget, 2016, 7(46): 75339-75352.
[19]DENG Y R, LIU W B, LIAN Z X, et al. Sorafenib inhibits macrophage-mediated epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Oncotarget, 2016, 7(25): 38292-38305.
[20]FOLKMAN J. What is the evidence that tumors are angiogenesis dependent?[J]. Journal of the National Cancer Institute, 1990, 82(1): 4-7.
[21]BERGERS G, BENJAMIN L E. Tumorigenesis and the angiogenic switch[J]. Nature Reviews Cancer, 2003, 3(6): 401-410.
[22]MURDOCH C, MUTHANA M, COFFELT S B, et al. The role of myeloid cells in the promotion of tumour angiogenesis[J]. Nature Reviews Cancer, 2008, 8(8): 618-631.
[23]DIRKX A E M, OUDE EGBRINK M G A, WAGSTAFF J, et al. Monocyte/macrophage infiltration in tumors: modulators of angiogenesis[J]. Journal of Leukocyte Biology, 2006, 80(6): 1183-1196.
[24]MAZZIERI R, PUCCI F, MOI D, et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells[J]. Cancer Cell, 2011, 19(4): 512-526.
[25]KLOEPPER J, RIEDEMANN L, AMOOZGAR Z, et al. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival[J]. Proceedings of the National Academy of Sciences, 2016, 113(16): 4476-4481.
[26]KUJAWSKI M, KORTYLEWSKI M, LEE H, et al. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice[J]. Journal of Clinical Investigation, 2008, 118(10): 3367-3377.
[27]YEO E J, CASSETTA L, QIAN B Z, et al. Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer[J]. Cancer Research, 2014, 74(11): 2962-2973.
[28]CHENG N, BAI X X, SHU Y X, et al. Targeting tumor-associated macrophages as an antitumor strategy[J]. Biochemical Pharmacology, 2021, 183: 114354.
[29]CHEN Y B, SONG Y C, DU W, et al. Tumor-associated macrophages: an accomplice in solid tumor progression[J]. Journal of Biomedical Science, 2019, 26(1): 78.
[30]KUANG D M, ZHAO Q Y, PENG C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1[J]. Journal of Experimental Medicine, 2009, 206(6): 1327-1337.
[31]CHANG A L, MISKA J, WAINWRIGHT D A, et al. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells[J]. Cancer Research,2016, 76(19): 5671-5682.
[32]KROEMER G, GALLUZZI L, KEPP O, et al. Immunogenic cell death in cancer therapy[J]. Annual Review of Immunology, 2013, 31(1): 51-72.
[33]CORTESE N, CASTINO G F, DI CARO G, et al. Dual prognostic significance of tumor-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy[J]. Gut, 2016, 65(10): 1710-1720.
[34]ANFRAY C, UMMARINO G F, ANDÓN F T, et al. Current strategies to target tumor-associated-macrophages to improve anti-tumor immune responses[J]. Cells, 2019, 9(1): 46.
[35]CASTRO B A, FLANIGAN P, JAHANGIRI A, et al. Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy[J]. Oncogene, 2017, 36(26): 3749-3759.
[36]DE GROOT J F, PIAO Y J, TRAN H, et al. Myeloid biomarkers associated with glioblastoma response to anti-VEGF therapy with aflibercept[J]. Clinical Cancer Research, 2011, 17(14): 4872-4881.
[37]SHREE T, OlSON O C, ELIE B T, et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer[J]. Genes and Development, 2011, 25(23): 2465-2479.
[38]OLSON O C, KIM H, QUAIL D F, et al. Tumor-associated macrophages suppress the cytotoxic activity of antimitotic agents[J]. Cell Reports, 2017, 19(1): 101-113.
[39]NAKASONE E S, ASKAUTRUD H A, KEES T, et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance[J]. Cancer Cell, 2012, 21(4): 488-503.
[40]ZHANG X, CHEN Y J, HAO L J, et al. Macrophages induce resistance to 5-fluorouracil chemotherapy in colorectal cancer through the release of putrescine[J]. Cancer Letters, 2016, 381(2): 305-313.
[41]BINENBAUM Y, FRIDMAN E, YAARI Z, et al. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma[J]. Cancer Research, 2018, 78(18): 5287-5299.
[42]LEBLOND M M, PÉRÈE E A, HELAINE C, et al. M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma[J]. Oncotarget, 2017, 8(42): 72597-72612.
[43]TERESA P A, LARANJEIRO P M, PATRÍCIA C A, et al. Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities[J]. Scientific Reports, 2016, 6(1): 18765.
[44]MENG Y R, BECKETT M A, LIANG H, et al. Blockade of tumor necrosis factor α signaling in tumor-associated macrophages as a radiosensitizing strategy[J]. Cancer Research, 2010, 70(4): 1534-1543.
[45]KLUG F, PRAKASH H, HUBER P E, et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy[J]. Cancer Cell, 2013, 24(5): 589-602.
[46]SHIAO S L, RUFFELL B, DENARDO D G, et al. TH2-Polarized CD4+ T cells and macrophages limit efficacy of radiotherapy[J]. Cancer Immunology Research, 2015, 3(5): 518-525.
[47]XU J Y, ESCAMILLA J, MOK S, et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer[J]. Cancer Research, 2013, 73(9): 2782-2794.
[48]ZHANG S Y, SONG X Y, LI Y, et al. Tumor-associated macrophages: a promising target for a cancer immunotherapeutic strategy[J]. Pharmacological Research, 2020, 161: 105111.
[49]KITAMURA T, QIAN B Z, SOONG D, et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages[J]. Journal of Experimental Medicine, 2015, 212(7): 1043-1059.
[50]PIENTA K J, MACHIELS J P, SCHRIJVERS D, et al. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer[J]. Investigational New Drugs, 2013, 31(3): 760-768.
[51]BRANA I, CALLES A, LORUSSO P M, et al. Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study[J]. Targeted Oncology, 2015, 10(1): 111-123.
[52]BONAPACE L, COISSIEUX M M, WYCKOFF J, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis[J]. Nature, 2014, 515(7525): 130-133.
[53]ZOLLO M, DI DATO V, SPANO D, et al. Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models[J]. Clinical and Experimental Metastasis, 2012, 29(6): 585-601.
[54]WANG H G, YUNG M M H, NGAN H Y S, et al. The impact of the tumor microenvironment on macrophage polarization in cancer metastatic progression[J]. International Journal of Molecular Sciences, 2021, 22(12): 6560.
[55]STRACHAN D C, RUFFELL B, OEI Y, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+T cells[J]. Oncoimmunology, 2014, 2(12): e26968.
[56]PRADEL L P, OOI C H, ROMAGNOLI S, et al. Macrophage susceptibility to emactuzumab (RG7155) treatment[J]. Molecular Cancer Therapeutics, 2016, 15(12): 3077-3086.
[57]LAMB Y N. Pexidartinib: first approval[J]. Drugs, 2019, 79(16): 1805-1812.
[58]BENNER B, GOOD L, QUIROGA D, et al. Pexidartinib, a novel small molecule CSF-1R inhibitor in use for tenosynovial giant cell tumor: a systematic review of pre-clinical and clinical development[J]. Drug Design, Development and Therapy, 2020, 14: 1693-1704.
[59]GUERRIERO J L. Macrophages: the road less traveled, changing anticancer therapy[J]. Trends in Molecular Medicine, 2018, 24(5): 472-489.
[60]RIES C H, CANNARILE M A, HOVES S, et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy[J]. Cancer Cell, 2014, 25(6): 846-859.
[61]WEIZMAN N, KRELIN Y, SHABTAY O A, et al. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase[J]. Oncogene, 2014, 33(29): 3812-3819.
[62]BORGHESE C, CATTARUZZA L, PIVETTA E, et al. Gefitinib inhibits the cross-talk between mesenchymal stem cells and prostate cancer cells leading to tumor cell proliferation and inhibition of docetaxel activity[J]. Journal of Cellular Biochemistry, 2013, 114(5): 1135-1144.
[63]ZHOU W Q, GUO S C, LIU M L, et al. Targeting CXCL12/CXCR4 axis in tumor immunotherapy[J]. Current Medicinal Chemistry, 2019, 26(17): 3026-3041.
[64]LI X, BU W H, MENG L, et al. CXCL12/CXCR4 pathway orchestrates CSC-like properties by CAF recruited tumor associated macrophage in OSCC[J]. Experimental Cell Research, 2019, 378(2): 131-138.
[65]MOTA J M, LEITE C A, SOUZA L E, et al. Post-sepsis state induces tumor-associated macrophage accumulation through CXCR4/CXCL12 and favors tumor progression in mice[J]. Cancer Immunology Research, 2016, 4(4): 312-322.
[66]ZENG Y, LI B H, LIANG Y Y, et al. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment[J]. The FASEB Journal, 2019, 33(5): 6596-6608.
[67]ISHIDA Y, KUNINAKA Y, YAMAMOTO Y, et al. Pivotal involvement of the CX3CL1-CX3CR1 axis for the recruitment of M2 tumor-associated macrophages in skin carcinogenesis[J]. Journal of Investigative Dermatology, 2020, 140(10): 1951-1961.e6.
[68]HERRERO A B, MARTÍN C C, MARCO E, et al. Cross-talk between nucleotide excision and homologous recombination DNA repair pathways in the mechanism of action of antitumor trabectedin[J]. Cancer Research, 2006, 66(16): 8155-8162.
[69]GERMANO G, FRAPOLLI R, BELGIOVINE C, et al. Role of macrophage targeting in the antitumor activity of trabectedin[J]. Cancer Cell, 2013, 23(2): 249-262.
[70]DRAKE M T, CLARKE B L, KHOSLA S. Bisphosphonates: mechanism of action and role in clinical practice[J]. Mayo Clinic Proceedings, 2008, 83(9): 1032-1045.
[71]COSCIA M, QUAGLINO E, IEZZI M, et al. Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway[J]. Journal of Cellular and Molecular Medicine, 2010, 14(12): 2803-2815.
[72]JUNANKAR S, SHAY G, JURCZYLUK J, et al. Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer[J]. Cancer Discovery, 2015, 5(1): 35-42.
[73]ROGERS T L, HOLEN I. Tumour macrophages as potential targets of bisphosphonates[J]. Journal of Translational Medicine, 2011, 9: 177.
[74]ZEISBERGER S M, ODERMATT B, MARTY C, et al. Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach[J]. British Journal of Cancer, 2006, 95(3): 272-281.
[75]PUCCI F, GARRIS C, LAI C P, et al. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions[J]. Science, 2016, 352(6282): 242-246.
[76]OHNISHI K, KOMOHARA Y, SAITO Y, et al. CD169-positive macrophages in regional lymph nodes are associated with a favorable prognosis in patients with colorectal carcinoma[J]. Cancer Science, 2013, 104(9): 1237-1244.
[77]SHIOTA T, MIYASATO Y, OHNISHI K, et al. The clinical significance of CD169-positive lymph node macrophage in patients with breast cancer[J]. PLoS One, 2016, 11(11): e0166680.
[78]LIANG W, KUJAWSKI M, WU J, et al. Antitumor activity of targeting SRC kinases in endothelial and myeloid cell compartments of the tumor microenvironment[J]. Clinical Cancer Research, 2010, 16(3):924-935.
[79]GALMBACHER K, HEISIG M, HOTZ C, et al. Shigella mediated depletion of macrophages in a murine breast cancer model is associated with tumor regression[J]. PLoS One, 2010, 5(3): e9572.
[80]BAK S P, WALTERS J J, TAKEYA M, et al. Scavenger receptor-a-targeted leukocyte depletion inhibits peritoneal ovarian tumor progression[J]. Cancer Research, 2007, 67(10): 4783-4789.
[81]SMAHEL M, DUSKOVA M, POLAKOVA I, et al. Enhancement of DNA vaccine potency against legumain[J]. Journal of Immunotherapy, 2014, 37(5): 293-303.
[82]DENARDO D G, RUFFELL B. Macrophages as regulators of tumour immunity and immunotherapy[J]. Nature Reviews Immunology, 2019, 19(6): 369-382.
[83]ELGUETA R, BENSON M J, DE VRIES V C, et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system[J]. Immunological Reviews, 2009, 229(1): 152-172.
[84]BEATTTY G L, CHIOREAN E G, FISHMAN M P, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans[J]. Science, 2011, 331(6024): 1612-1616.
[85]BYRD J C, KIPPS T J, FLINN I W, et al. Phase I study of the anti-CD40 humanized monoclonal antibody lucatumumab (HCD122) in relapsed chronic lymphocytic leukemia[J]. Leukemia and Lymphoma, 2012, 53(11): 2136-2142.
[86]VONDERHEIDE R H, FLAHERTY K T, KHALIL M, et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody[J]. Journal of Clinical Oncology, 2007, 25(7): 876-883.
[87]OFLAZOGLU E, STONE I J, BROWN L, et al. Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40[J]. British Journal of Cancer, 2009, 100(1): 113-117.
[88]BEATTY G L, TORIGIAN D A, CHIOREAN E G, et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma[J]. Clinical Cancer Research, 2013, 19(22): 6286-6295.
[89]PATRA M C, CHOI S. Recent progress in the development of toll-like receptor (TLR) antagonists[J]. Expert Opinion on Therapeutic Patents, 2016, 26(6): 719-730.
[90]WANG D Q, JIANG W, ZHU F G, et al. Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy[J]. International Journal of Oncology, 2018,53(3): 1193-1203.
[91]HUANG Z, YANG Y, JIANG Y C, et al. Anti-tumor immune responses of tumor-associated macrophages via toll-like receptor 4 triggered by cationic polymers[J]. Biomaterials, 2013, 34(3): 746-755.
[92]SATO-KANEKO F, YAO S Y, AHMADI A, et al. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer[J]. JCI Insight, 2017, 2(18): 93397.
[93]MULLINS S R, VASILAKOS J P, DESCHLER K, et al. Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies[J]. Journal for Immunotherapy of Cancer, 2019, 7(1): 244.
[94]KANEDA M M, MESSER K S, RALAINIRINA N, et al. PI3Kγ is a molecular switch that controls immune suppression[J]. Nature, 2017, 542(7639): 124.
[95]GUERRIERO J L, SOTAYO A, PONICHTERA H E, et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages[J]. Nature, 2017, 543(7645): 428-432.
[96]YANG L, WANG F, WANG L P, et al. CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients[J]. Oncotarget, 2015, 6(12): 10592-10603.
[97]ZANGANEH S, HUTTER G, SPITLER R, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues[J]. Nature Nanotechnology, 2016, 11(11): 986-994.
[98]GARACI E, PICA F, SERAFINO A, et al. Thymosin α1 and cancer: action on immune effector and tumor target cells[J]. Annals of the New York Academy of Sciences, 2012, 1269(1): 26-33.
[99]CHAN G C F, CHAN W K, SZE D M Y. The effects of β-glucan on human immune and cancer cells[J]. Journal of Hematology and Oncology, 2009, 2: 25.
[100]ZHANG Q, LI Y N, MIAO C Y, et al. Anti-angiogenesis effect of Neferine via regulating autophagy and polarization of tumor-associated macrophages in high-grade serous ovarian carcinoma[J]. Cancer Letters, 2018, 432: 144-155.
[101]TSUBOKI J, FUJIWARA Y, HORLAD H, et al. Onionin a inhibits ovarian cancer progression by suppressing cancer cell proliferation and the protumour function of macrophages[J]. Scientific Reports, 2016, 6: 29588.
[102]KANG H G, ZHANG J, WANG B Z, et al. Puerarin inhibits M2 polarization and metastasis of tumor-associated macrophages from NSCLC xenograft model via inactivating MEK/ERK 1/2 pathway[J]. International Journal of Oncology, 2017, 50(2): 545-554.
[103]ZANGANEH S, HUTTER G, SPITLER R, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues[J]. Nature Nanotechnology, 2016, 11: 986-994.
[104]RODELL C B, ARLAUCKAS S P, CUCCARESE M F, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy[J]. Nature Biomedical Engineering, 2018, 2: 578-588.
[105]CAO M, YAN H, HAN X, et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth[J]. Journal for Immunotherapy of Cancer, 2019, 7(1): 326.
[106]HAN S, WANG W, WANG S, et al. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes[J]. Theranostics, 2021, 11(6): 2892-2916.
[107]BAER C, SQUADRITO M L, LAOUI D, et al. Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity[J]. Nature Cell Biology, 2016, 18(7): 790-802.
[108]MAJETI R, CHAO M P, ALIZADEH A A, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells[J]. Cell, 2009, 138(2): 286-299.
[109]BARKAL A A, WEISKOPF K, KAO K S, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy[J]. Nature Immunology, 2018, 19(1): 76-84.
[110]BARKAL A A, BREWER R E, MARKOVIC M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy[J]. Nature, 2019, 572(7769): 392-396.
[111]BARCLAY A N, VAN DEN BERG T K. The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target[J]. Annual Review of Immunology, 2014, 32: 25-50.
[112]WEISKOPF K. Cancer immunotherapy targeting the CD47/SIRPα axis[J]. European Journal of Cancer, 2017, 76: 100-109.
[113]BRIERLEY C K, STAVES J, ROBERTS C, et al. The effects of monoclonal anti-CD47 on RBCs, compatibility testing, and transfusion requirements in refractory acute myeloid leukemia[J]. Transfusion, 2019, 59(7): 2248-2254.
[114]SIKIC B I, LAKHANI N, PATNAIK A, et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers[J]. Journal of Clinical Oncology, 2019, 37(12): 946-953.
[115]PETROVA P S, VILLER N N, WONG M, et al. TTI-621 (SIRPαFc): a CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding[J]. Clinical Cancer Research, 2017, 23(4): 1068-1079.
[116]KO Y J, LEE J W, KIM H, et al. Versatile activatable vSIRPα-probe for cancer-targeted imaging and macrophage-mediated phagocytosis of cancer cells[J]. Journal of Controlled Release, 2020, 323: 376-386.
[117]GORDON S R, MAUTE R L, DULKEN B W, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity[J]. Nature, 2017, 545(7655): 495-499.
[118]BARKAL A A, BREWER R E, MARKOVIC M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy[J]. Nature, 2019, 572(7769): 392-396.
[119]RPMANO E, KUSIO K M, FOUKAS P G, et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients[J]. Proceedings of the National Academy of Sciences, 2015, 112(19): 6140-6145.
[120]KALBASI A, RIBAS A. Tumour-intrinsic resistance to immune checkpoint blockade[J]. Nature Reviews Immunology, 2020, 20(1): 25-39.
[121]AUSTYN J M, GORDON S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage[J]. European Journal of Immunology, 1981, 11(10): 805-815.
[122]BILZER M, ROGGEL F, GERBES A L. Role of Kupffer cells in host defense and liver disease[J]. Liver International, 2006, 26(10): 1175-1186.
[123]IMAI K, TAKAOKA A. Comparing antibody and small-molecule therapies for cancer[J]. Nature Reviews Cancer, 2006, 6(9): 714-727.
[124]XIA Y Q, RAO L, YAO H M, et al. Engineering macrophages for cancer immunotherapy and drug delivery[J]. Advanced Materials, 2020, 32(40): e2002054.
[125]VILLANUEVA M T. Macrophages get a CAR[J]. Nature Reviews Cancer, 2020, 20(6): 300.
[126]PAN K, FARRUKH H, CHITTEPU V C S R, et al. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy[J]. Journal of Experimental and Clinical Cancer Research, 2022, 41(1): 119.
[127]KLICHINSKY M, RUELLA M, SHESTOVA O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy[J]. Nature Biotechnology, 2020, 38(8): 947-953.
[1] 梁家玮, 孙婉莹, 罗刘睿麒, 蒋邦平, 沈星灿. 刺激响应型纳米酶及其原位催化增强肿瘤治疗[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 300-306.
[2] 周俊, 陈舒曼, 邢兵, 陈雅静, 李银玲, 何柳, 周祖平, 蒲仕明. 正常来源CD4+CD25+细胞在小鼠肺癌模型中的抗肿瘤作用[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 191-199.
[3] 许伦辉, 曹宇超, 林培群. 基于融合免疫优化和遗传算法的多应急物资中心选址与调度[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 1-13.
[4] 吴卓玲,赖艳花,杨柳. 不同固定剂对核膜蛋白免疫荧光效果的比较研究[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 121-125.
[5] 曹永春, 邵亚斌, 田双亮, 蔡正琦. 一种基于免疫遗传算法的聚类方法[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 59-64.
[6] 蔡豪斌, 张旋, 王茂水, 郑仲声, 秦雪, 阳艳华, 沈星灿. 人工培植冬虫夏草水提物抗人巨细胞病毒的研究[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 47-51.
[7] 廖海波, 万中英, 王明文. 免疫进化的投影寻踪模型在文本分类中的应用[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 123-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1 -21 .
[2] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22 -34 .
[3] 帖军, 隆娟娟, 郑禄, 牛悦, 宋衍霖. 基于SK-EfficientNet的番茄叶片病害识别模型[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 104 -114 .
[4] 翁烨, 邵德盛, 甘淑. 等式约束病态最小二乘的主成分Liu估计解法[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 115 -125 .
[5] 覃城阜, 莫芬梅. C3-和C4-临界连通图的结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 145 -153 .
[6] 贺青, 刘剑, 韦联福. 微弱电磁信号的物理极限检测:单光子探测器及其研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 1 -23 .
[7] 田芮谦, 宋树祥, 刘振宇, 岑明灿, 蒋品群, 蔡超波. 逐次逼近型模数转换器研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 24 -35 .
[8] 张师超, 李佳烨. 知识矩阵表示[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 36 -48 .
[9] 梁钰婷, 罗玉玲, 张顺生. 基于压缩感知的混沌图像加密研究综述[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 49 -58 .
[10] 郝雅茹, 董力, 许可, 李先贤. 预训练语言模型的可解释性研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 59 -71 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发