广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (5): 141-149.doi: 10.16088/j.issn.1001-6600.2024032001

• 研究论文 • 上一篇    下一篇

基于密度泛函理论的团簇Co2Mo2P3催化性质研究

吴庭慧, 方志刚*, 刘立娥, 宋静丽, 宋嘉   

  1. 辽宁科技大学 化学工程学院,辽宁 鞍山 114051
  • 收稿日期:2024-03-20 修回日期:2024-04-12 出版日期:2024-09-25 发布日期:2024-10-11
  • 通讯作者: 方志刚(1964—),男,辽宁鞍山人,辽宁科技大学教授,博导。E-mail:lnfzg@163.com
  • 基金资助:
    国家自然科学基金重点项目(51634004);国家级大学生创新创业训练计划项目(202310146026,202310146027,202310146025)

Catalytic Properties of Co2Mo2P3 Cluster Analyzed by Density Functional Theory

WU Tinghui, FANG Zhigang*, LIU Li'e, SONG Jingli, SONG Jia   

  1. School of Chemical Engineering, Liaoning University of Science and Technology, Anshan Liaoning 114051, China
  • Received:2024-03-20 Revised:2024-04-12 Online:2024-09-25 Published:2024-10-11

摘要: 基于拓扑学原理和密度泛函理论,本文探究团簇Co2Mo2P3的催化反应作用机理及其活性产生的原因,使用Gaussian09程序,在B3LYP/Lanl2dz水平下,对团簇的初始构型进行全参数优化和运算分析。对Co2Mo2P3中各个原子对其HOMO和LUMO轨道的贡献进行研究,得到Co对其前线轨道的贡献率为53.511%、59.013%,Co原子在该团簇中是潜在的活性位点。通过观察态密度图和HOMO-LUMO图,发现Co原子是引起费米能量级两边峰值的主要因素。进一步的能隙差和库普曼斯定理分析显示,构型1(4)和3(4)具有较强的得失电子能力,并且拥有比其他构型更强的催化活性,这些结果为深入理解团簇Co2Mo2P3的催化性能提供了有力支持。本研究的发现为团簇Co2Mo2P3在催化反应中的应用机制和活性产生的原因提供了重要理论依据,为进一步优化催化性能,设计高效催化剂提供了有益参考。

关键词: 团簇Co2Mo2P3, 密度泛函理论, 前线轨道, 催化性质, 态密度, 能隙差, 库普曼斯定理

Abstract: Based on topological principles and density functional theory,the catalytic reaction mechanism and the reasons behind the activity of the Co2Mo2P3 cluster were investigated. Using the Gaussian09 program at the B3LYP/Lanl2dz level,full parameter optimization and computational analysis of the cluster's initial configuration were performed. Through an analysis of the contributions of each atom in the Co2Mo2P3 cluster to the HOMO and LUMO orbitals,we found that the Co atoms contribute 53.511% and 59.013% to the frontier orbitals,indicating their potential as active sites in the cluster. Additionally,observations of the density of states and HOMO-LUMO plots revealed that the Co atoms played a significant role in generating the peaks in the Fermi energy levels. Further analysis of the energy gap and Koopmans' theorem showed that configurations 1(4) and 3(4) had strong electron-gaining and electron-donating capabilities,respectively,and possess higher catalytic activity compared with other configurations. These results provide robust support for a deeper understanding of the catalytic performance of the Co2Mo2P3 cluster. The findings of this study offer essential theoretical insights into the catalytic reaction mechanism and activity generation of the Co2Mo2P3 cluster,providing valuable references for further optimizing catalytic performance and designing efficient catalysts.

Key words: Co2Mo2P3 cluster, density functional theory, front-line tracks, catalytic properties, state density, energy gap, Koopmans' theorem

中图分类号:  O641.12

[1] WANG D Z,ZHANG X Y,ZHANG D Z,et al. Influence of Mo/P ratio on CoMoP nanoparticles as highly efficient HER catalysts[J]. Applied Catalysis A:General,2016,511:11-15. DOI: 10.1016/j.apcata.2015.11.029.
[2] ZHANG Y P,JIN Z L,SU Y F,et al. Charge separation and electron transfer routes modulated with Co-Mo-P over g-C3N4 photocatalyst[J]. Molecular Catalysis,2019,462:46-55. DOI: 10.1016/j.mcat.2018.10.009.
[3] 郑新喜,方志刚,秦渝,等. 团簇Fe3Ni3电子性质[J]. 贵州大学学报(自然科学版),2021,38(5):7-12,19. DOI: 10.15958/j.cnki.gdxbzrb.2021.05.02.
[4] ZHENG L Y,LIU C,ZHANG W B,et al. Heterostructured MoP/CoMoP2 embedded in an N,P-doped carbon matrix as a highly efficient cooperative catalyst for pH-universal overall water splitting[J]. Journal of Materials Chemistry A,2024,12(2):1243-1252. DOI: 10.1039/D3TA05328H.
[5] CHEN S R,XU J L,CHEN J Y,et al. Current progress of Mo-based metal organic frameworks derived electrocatalysts for hydrogen evolution reaction[J]. Small,2024,20(1):e2304681. DOI: 10.1002/smll.202304681.
[6] 方志刚,许友,王智瑶,等. 基于量子化学的团簇Co4P非晶态合金析氢反应研究[J]. 江西师范大学学报(自然科学版),2022,46(3):221-226. DOI: 10.16357/j.cnki.issn1000-5862.2022.03.01.
[7] 毛智龙,方志刚,侯欠欠,等. 团簇Co3FeP光谱的预测分析[J]. 江西师范大学学报(自然科学版),2022,46(1):81-86. DOI: 10.16357/j.cnki.issn1000-5862.2022.01.11.
[8] 秦渝,方志刚,张伟,等. 团簇Co3NiB催化析氢活性研究[J]. 江西师范大学学报(自然科学版),2020,44(1):56-62. DOI: 10.16357/j.cnki.issn1000-5862.2020-01-010.
[9] JIANG D L,XU Y,YANG R,et al. CoP3/CoMoP heterogeneous nanosheet arrays as robust electrocatalyst for pH-universal hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering,2019,7(10):9309-9317. DOI: 10.1021/acssuschemeng.9b00357.
[10] MAI W S,CUI Q,ZHANG Z Q,et al. CoMoP/NiFe-layered double-hydroxide hierarchical nanosheet arrays standing on Ni Foam for efficient overall water splitting[J]. ACS Applied Energy Materials,2020,3(8):8075-8085. DOI: 10.1021/acsaem.0c01538.
[11] GONG L,LAN K,WANG X,et al. Carbon-coated Co-Mo-P nanosheets supported on carbon cloth as efficient electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2020,45(1):544-552. DOI: 10.1016/j.ijhydene.2019.10.248.
[12] 方志刚,王智瑶,郑新喜,等. 团簇Co3NiB2极化率、偶极矩及态密度研究[J]. 贵州大学学报(自然科学版),2022,39(1):17-24. DOI: 10.15958/j.cnki.gdxbzrb.2022.01.02.
[13] 吴庭慧,方志刚,朱依文,等. 团簇Co2Mo2P3析氢活性的研究[J]. 重庆师范大学学报(自然科学版),2023,40(6):115-121. DOI: 10.11721/cqnuj20230604.
[14] GANDUBERT A D,LEGENS C,GUILLAUME D,et al. X-ray photoelectron spectroscopy surface quantification of sulfided CoMoP catalysts. Relation between activity and promoted sites. Part II:influence of the sulfidation temperature[J]. Surface and Interface Analysis,2006,38(4):206-209. DOI: 10.1002/sia.2249.
[15] ROMERO-GALARZA A,GUTIÉRREZ-ALEJANDRE A,RAMÍREZ J. Analysis of the promotion of CoMoP/Al2O3 HDS catalysts prepared from a reduced H-P-Mo heteropolyacid Co salt[J]. Journal of Catalysis,2011,280(2):230-238. DOI: 10.1016/j.jcat.2011.03.021.
[16] MA Y Y,WU C X,FENG X J,et al. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C[J]. Energy & Environmental Science,2017,10(3):788-798. DOI: 10.1039/C6EE03768B.
[17] 吴庭慧,方志刚,王智瑶,等. 团簇Co2Mo2P3结构稳定极化率[J]. 江西师范大学学报(自然科学版),2023,47(2):148-153. DOI: 10.16357/j.cnki.issn1000-5862.2023.02.05.
[18] 李历红,方志刚,赵振宁,等. 团簇Ni3CoP催化析氢活性研究[J]. 广西师范大学学报(自然科学版),2019,37(1):165-172. DOI: 10.16088/j.issn.1001-6600.2019.01.019.
[19] 李历红,方志刚,赵振宁,等. 团簇Ni3CoP电子性质与磁性研究[J]. 江西师范大学学报(自然科学版),2019,43(2):160-166. DOI: 10.16357/j.cnki.issn1000-5862.2019.02.08.
[20] HAY P J. Gaussian basis sets for molecular calculations. The representation 3d orbitals in transition-metal atoms[J]. The Journal of Chemical Physics,1977,66(10):4377-4384.
[21] 方志刚,刘立娥,吴庭慧,等. 基于密度泛函理论对团簇CrPS4的光谱分析[J]. 贵州师范大学学报(自然科学版),2024,42(3):1-8. DOI: 10.16614/j.gznuj.zrb.2024.03.001.
[22] FANG Z G,HU H Z,GUO J X,et al. Quantum chemical study on geometry and property of cluster Ni4P[J]. Chinese Journal of Structural Chemistry,2006,25(1):7-16. DOI: 10.1002/cjoc.200690090.
[23] FUKUI K,YONEZAWA T,SHINGU H. A molecular orbital theory of reactivity in aromatic hydrocarbons[J]. Journal of Chemical Physics,1952,20(4):722-725. DOI: 10.1063/1.1700523.
[24] AIHARA J. Reduced HOMO-LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons[J]. The Journal of Physical Chemistry A,1999,103(37):7487-7495. DOI: 10.1021/jp990092i.
[1] 原琳, 方志刚, 刘立娥, 魏代霞, 宋静丽. 团簇MnPS3电子性质分析[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 159-165.
[2] 侯欠欠, 方志刚, 秦渝, 朱依文. 团簇Fe4P的成键及极化率探究[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 140-146.
[3] 李历红, 方志刚, 赵振宁, 陈林, 韩建铭, 崔远东, 马填棋, 姜雨晨. 团簇Ni3CoP催化析氢活性研究[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 165-172.
[4] 李雯博,方志刚,赵振宁,陈 林,徐诗浩,韩建铭,刘 琪,崔远东. 团簇Co5B2反应活性的DFT研究[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 76-83.
[5] 徐诗浩, 方志刚, 韩建铭, 赵振宁, 陈林, 刘琪. 团簇V3B2成键及磁学性质研究[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 89-96.
[6] 张成刚, 方志刚, 赵振宁, 王茂鑫, 刘继鹏, 徐诗浩, 韩建铭. 团簇CoFe2B2稳定性的密度泛涵理论研究[J]. 广西师范大学学报(自然科学版), 2016, 34(3): 86-94.
[7] 陈凯, 房成法, 王飞. 改进动态密度模型在扇区容量评估的应用[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李文博, 董青, 刘超, 张奇. 基于对比学习的儿科问诊对话细粒度意图识别[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 1 -10 .
[2] 高盛祥, 杨元樟, 王琳钦, 莫尚斌, 余正涛, 董凌. 面向域外说话人适应场景的多层级解耦个性化语音合成[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 11 -21 .
[3] 朱格格, 黄安书, 覃盈盈. 基于Web of Science的国际红树林研究发展态势分析[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 1 -12 .
[4] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[5] 左钧元, 李欣彤, 曾子涵, 梁超, 蔡进军. 金属有机骨架基催化剂在糠醛选择性加氢反应中的应用研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 28 -38 .
[6] 谭全伟, 薛贵军, 谢文举. 基于VMD和RDC-Informer的短期供热负荷预测模型[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 39 -51 .
[7] 刘畅平, 宋树祥, 蒋品群, 岑明灿. 基于开关电容的差分无源N通道滤波器[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 52 -60 .
[8] 王党树, 孙龙, 董振, 贾如琳, 杨黎康, 吴家驹, 王新霞. 变化负载下全桥LLC谐振变换器参数优化设计[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 61 -71 .
[9] 张锦忠, 韦笃取. PMSM混沌系统无初始状态约束的固定时间有界控制[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 72 -78 .
[10] 涂智荣, 凌海英, 李帼, 陆声链, 钱婷婷, 陈明. 基于改进YOLOv7-Tiny的轻量化百香果检测方法[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 79 -90 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发