广西师范大学学报(自然科学版) ›› 2016, Vol. 34 ›› Issue (3): 86-94.doi: 10.16088/j.issn.1001-6600.2016.03.012

• • 上一篇    下一篇

团簇CoFe2B2稳定性的密度泛涵理论研究

张成刚, 方志刚, 赵振宁, 王茂鑫, 刘继鹏, 徐诗浩, 韩建铭   

  1. 辽宁科技大学化学工程学院,辽宁鞍山114051
  • 收稿日期:2016-01-24 出版日期:2016-09-30 发布日期:2018-09-17
  • 通讯作者: 方志刚(1964—),男,辽宁鞍山人,辽宁科技大学教授,博士。E-mail:lnfzg@163.com
  • 基金资助:
    国家自然科学基金资助项目(51144008);国家级大学生创新创业训练项目(201510146039);辽宁省大学生创新创业训练项目(201510146009)

The Density Functional Theory Study on Stability of Cluster CoFe2B2

ZHANG Chenggang, FANG Zhigang, ZHAO Zhenning, WANG Maoxin,
LIU Jipeng, XU Shihao, HAN Jianming   

  1. School of Chemical Engineering, University of Science and Technology Liaoning, Anshan Liaoning 114051, China
  • Received:2016-01-24 Online:2016-09-30 Published:2018-09-17

摘要: 运用密度泛函理论(density functional theory, DFT)方法,在Becke3LYP/Lanl2dz水平下,对团簇CoFe2B2各个可能的构型进行优化,最终得到9种优化构型。本文从动力学、热力学稳定性2个方面对这9种构型之间的异构化反应进行分析,发现异构化反应的限度受团簇热力学稳定性的影响,提出一种线性方程lnK=0.391 9ΔE+0.435 7以预测团簇异构化反应的限度;多数构型通过一种或多种通道向构型2(2)转化;构型1(4)、2(4)两者之间的反应为可逆反应,构型1(2)无异构化反应发生并且具有很好的稳定性,最终存在构型为1(2)、2(2)、1(4)、2(4),即戴“帽”三角锥和四角方锥两类构型。

关键词: 团簇CoFe2B2, 异构化反应, 稳定性, 密度泛函理论(DFT)

Abstract: Nine stable configurations were gained after a series of cluster CoFe2B2 models were optimized and calculated under the Becke3LYP/Lanl2dz level by using density functional theory (DFT) method. Isomerization reactions of those stable configurations were studied from thermodynamics and dynamics. A logarithmic equation is proposed to predict the limit of isomerization reaction, namely lnK=0.391 9ΔE+0.435 7; most of stable configurations were converted to configuration 2(2) through one or more doors and the isomerization reaction of configurations 1(4)/2(4) is reversible; there is no isomerization of configuration 1(2) taking place, and the final existence of cluster CoFe2B2 are configurations 1(2) 2(2) 1(4) 2(4), namely capped triangular and quadrangular pyramid structures.

Key words: cluster CoFe2B2, isomerization reaction, stability, density functional theory(DFT)

中图分类号: 

  • O64
[1] ALBERTY R A. The chemical kinetics of enzyme action[J]. Journal of American Chemical Society, 1958, 81(6): 1521-1522.
[2] EYRING H. Transition states and enzyme kinetics[J]. BioScience, 1979, 29(8): 485.
[3] ANISIMOV V I, KOZHEVNIKOV A V. Transition state method and wannier functions[J]. Physical Review B, 2005, 72(7): 5125.
[4] LI C B, SHOJIGUCHI A, TODA M, et al. Dynamical hierarchy in transition states of reactions[J]. Few-Body Syst, 2006(2/4): 173-179.
[5] ÇIFTÇI Ü, WAALKENS H. Reaction dynamics through kinetic transition states[J]. Physical Review Letters, 2013, 110(23):182.
[6] GAO W, LENG J, SHANG C, et al. Efficient softest mode finding in transition states calculations[J]. Journal of Chemical Physics, 2013, 138(9):094110.
[7] KALININ Y E, SITNIKOV A V, STOGNEI O V, et al. Electrical properties and giant magnetoresistance of the CoFeB-SiO2 amorphous granular composites[J]. Materials Science and Engineering, 2001, 304: 941-945.
[8] STOGNEI O V, SLYUSAREV V A, KALININ Y E, et al. Hange of the electrical properties of granular CoFeB-SiOn nanocomposites after heat treatment[J]. Microelectronic Engineering, 2003, 69(24): 476-479.
[9] SEEMANN K M, FREIMUTH F, ZHANG H, et al. Origin of the planar hall effect in nanocrystalline Co60Fe20B20[J]. Hysical Review Letters, 2011, 107: 312.
[10] WANG S L, HONG L L. Effect of the heat treatment on the structure and the properties of the electroless CoFeB alloy[J]. Journal of Alloys and Compounds, 2007, 429: 99-103.
[11] DADVAND N, JARJOURA G, KIPOUROS G J. Preparation and characterization of Co-Fe-B thin films produced by electroless deposition[J]. Journal of Materials Science: Mater Electron, 2008, 19(1): 50-59.
[12] ZHANG S G, ZHU H X,TIAN J J, et al. Electromagnetic and microwave absorbing properties of FeCoB powder composites[J]. Rare Metals, 2013, 32: 402.
[13] ZHANG S, ZHAO Y G, XIAO X, et al. Giant electrical modulation of magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(011) heterostructure[J]. Scientific Reports, 2014, 4: 3727.
[14] JEON M S, CHAE K S, LEED Y, et al. The dependency of tunnel magnetoresistance ratio on nanoscale thicknesses of Co2Fe6B2 free and pinned layers for Co2Fe6B2/MgO-based perpendicular-magnetic-tunnel-junctions[J]. Nanoscale, 2015, 7: 8142.
[15] MOLINA C B, ZYSLER R D, ROMERO H. Anomalous magnetization enhancement and frustration in the internal magnetic order on (Fe0.69Co0.31)B0.4 nanoparticles[J]. Applied Sciences, 2012, 2(4): 315-326.
[16] HINDMARCH A T, KINANE C J, MACKENZIE M, et al. Interface induced uniaxial magnetic anisotropy in amorphous CoFeB films on AlGaAs(001)[J]. Physical Review Letters, 2008, 100(11): 2339-2340.
[17] PALUSKER P V, LAVRIJSEN R, SICOT M, et al. Correlation between magnetism and spin-dependent transport in CoFeB alloys[J]. Physical Review Letters, 2009, 102(1): 6602.
[18] IKEDA S, MIURA K, YAMAMOTOH, et al. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction[J]. Nature Materials, 2010, 9(9): 721-724.
[19] HE W, ZHOU T, ZHANG X, et al. Ultrafast demagnetization enhancement in CoFeB/MgO/CoFeB magnetic tunneling junction driven by spin tunneling current[J]. Scientific Reports, 2013,3(10): 1-5.
[20] TORREJON J, KIM J, SINHA J, et al. Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers[J]. Nature Communications, 2014,5:1-8.
[21] PEI Y, WANG J Q, FU Q, et al. A non-noble amorphous Co-Fe-B catalyst highly selective in liquid phase hydrogenation of crotonaldehyde to crotyl alcohol[J]. New Journal of Chemistry, 2005, 29(8): 992-994.
[22] LIANG Y, WANG P, DAI H B, et al. Hydrogen bubbles dynamic template preparation of a porous Fe-Co-B/Ni foam catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution[J]. Journal of Alloys and Compounds, 2010, 491(1/2): 359-365.
[23] WANG Y P, WANG Y J, REN Q L, et al. Ultrafine amorphous Co-Fe-B catalysts for the hydrolysis of NaBH4 solutionto generate hydrogen for PEMFC[J]. Fuel Cells, 2010, 10(1): 132-138.
[24] WANG G W, ZHANG F, ZUO H P, et al. Fabrication and magnetic properties of Fe65Co35-ZnO nano-granular films[J]. Nanoscale Research Letter, 2010, 5(7): 1107-1110.
[25] BECK A. Density-functional thermochemistry. Ⅲ. The role of exact exchange[J]. Journal of Chemical Physics, 1993, 98(7): 5648-5652.
[26] HAY P J, WADT W R. Abinitio effective core potentials for molecular calculations[J]. Journal of Chemical Physics, 1985, 82(1): 270-283.
[27] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09, revision C.01[CP]. Wallingford C T: Gaussian, Inc., 2010.
[1] 郑涛, 周欣然, 张龙. 三种群捕食-竞争-合作混杂模型的全局渐近稳定性[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 64-70.
[2] 王俊杰, 温雪岩, 徐克生, 于鸣. 基于局部敏感哈希的改进堆叠算法[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 21-31.
[3] 罗兰, 周楠, 司杰. 不确定细胞神经网络鲁棒稳定新的时滞划分法[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 45-52.
[4] 洪玲玲,杨启贵. 新四维超混沌系统的复杂动力学研究[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 96-105.
[5] 吴娟,朱宏阳,梅平,陈武,李中宝. 聚甲基丙烯酸甲酯改性纳米SiO2及其Pickering乳液稳定性[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 120-131.
[6] 陈思谕, 邹艳丽, 周建, 谭华珍. 电网发电机功率分配及电网负载不均衡发展研究[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 52-59.
[7] 韩会庆, 蔡广鹏, 尹昌应, 马庚, 张英佳, 陆艺. 2000年和2015年乌江中上游景观稳定性变化研究[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 197-204.
[8] 苗新艳, 张龙, 罗颜涛, 潘丽君. 一类交替变化的竞争—合作混杂种群模型研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 25-31.
[9] 黄开娇, 肖飞雁. 具有Beddington-DeAngelis型功能性反应的随机捕食—被捕食系统[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 32-40.
[10] 梅春草,韦笃取*,罗晓曙. 分布式发电系统中感性负载的稳定性研究[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 50-55.
[11] 冯金明,李遵先. 一类具扩散的传染病模型的稳定性分析[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 63-68.
[12] 陈春燕, 许志鹏, 邝华. 连续记忆效应的交通流跟驰建模与稳定性分析[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 14-21.
[13] 徐诗浩, 方志刚, 韩建铭, 赵振宁, 陈林, 刘琪. 团簇V3B2成键及磁学性质研究[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 89-96.
[14] 邢伟, 高晋芳, 颜七笙, 周其华. 具有非线性传染率及脉冲免疫接种的SIQR传染病模型[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 58-65.
[15] 傅杰,邹艳丽,谢蓉. 簇网络的同步及稳定性研究[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 7-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发