广西师范大学学报(自然科学版) ›› 2016, Vol. 34 ›› Issue (3): 74-85.doi: 10.16088/j.issn.1001-6600.2016.03.011

• • 上一篇    下一篇

基于仿射跳扩散模型的利率衍生品定价

汪嘉骎, 邓国和   

  1. 广西师范大学数学与统计学院,广西桂林541004
  • 收稿日期:2016-03-01 出版日期:2016-09-30 发布日期:2018-09-17
  • 通讯作者: 邓国和(1969—),男,湖南桂阳人,广西师范大学教授,博士. E-mail:dengguohe@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11461008);教育部人文社会科学研究规划基金资助项目(13YJA910003);广西自然科学基金资助项目(2013GXNSFAA019005);广西高等学校科学技术研究重点项目(2013ZD010)

Pricing of Interest Rate Derivatives Based on Affine Jump Diffusion Model

WANG Jiaqin, DENG Guohe   

  1. School of Mathematics and Statistics,Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2016-03-01 Online:2016-09-30 Published:2018-09-17

摘要: 本文考虑短期利率满足一类仿射跳扩散期限结构模型的利率衍生品定价。应用Fourier变换方法和远期测度技术,获到了零息票债券及基于零息票债券为标的资产的欧式债券期权价格的显示解,并将此结果应用于付息债券期权和利率期权的定价。最后,利用数值实例分别分析了债券和零息票债券期权价格受利率模型中各主要参数的影响,以及期权的隐含波动率问题。数值结果表明,跳跃风险参数对利率衍生品价格和隐含波动率有显著作用,这也验证了仿射跳扩散的利率期限结构模型具有较好拟合实际的能力。

关键词: 仿射跳扩散模型, 利率期限结构, 债券期权, Fourier变换, 隐含波动率

Abstract: The pricing of interest rate derivatives is considered under an affine jump diffusion model. Using the Fourier transform method and the forward measure change technique,the closed explicit formulas for both the price of the default-free,zero-coupon bond and the value of the European options on the default-free,zero-coupon bond are obtained. Furthermore,pricing problems on both the European option on the coupon bond and the interest rate options are extended in this model by applying these explicit formulas above. Finally,the impacts of the key parameters in this model on prices for both the bond and bond option,and implied volatilities of bond options are analyzed by numerical examples,respectively. Numerical results show that the jump risks have more remarkable effects on the interest rate derivative prices and implied volatility,which show that the affine jump diffusion term structure model of the interest rate fits reality well.

Key words: affine jump diffusion model, term structure of interest rate, bond options, Fourier transform, implied volatility.

中图分类号: 

  • O211.9
[1] VASICEK O. An equilibrium characterization of the term structure[J]. Journal of Financial Economics,1977,5(2): 177-188. DOI:10.1016/0304-405X(77)90016-2.
[2] COX J C,INGERSOLL J E,ROSS S A. A theory of the term structure of interest rates[J]. Econometrica,1985,53(2): 385-407. DOI:10.2307/1911242.
[3] BRENNAN M J,SCHWARTZ E S. A continuous time approach to the pricing of bonds[J]. Journal of Banking and Finance,1979,3(2): 133-155. DOI:10.1016/0378-4266(79)90011-6.
[4] HULL J,WHITE A. Pricing interest-rate-derivative securities[J]. The Review of Financial Studies,1990,3(4): 573-592. DOI:10.1093/rfs/3.4.573.
[5] HEATH D,JARROW R,MORTON A. Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation[J]. Econometrica,1992,60(1): 77-105. DOI:10.2307/2951677.
[6] CHEN R R,SCOTT L. Pricing interest rate options in a two-factor Cox-Ingersoll-Ross model of the term structure[J]. The Review of Financial Studies,1992,5(4): 613-636. DOI:10.1093/rfs/5.4.613.
[7] BANSAL R,ZHOU Hao. Term structure of interest rates with regime shifts[J]. The Journal of Finance,2002,57(5): 1997-2043. DOI:10.1111/0022-1082.00487.
[8] DUFFIE D,KAN R. A yield-factor model of interest rates[J]. Mathematical Finance,1996,6(4): 379-406. DOI:10.1111/j.1467-9965.1996.tb00123.x.
[9] HAMILTON J D. Rational-expectations econometric analysis of changes in regime: an investigation of the term structure of interest rates[J]. Journal of Economic Dynamics and Control,1988,12(2/3): 385-423. DOI:10.1016/0165-1889(88)90047-4.
[10] DAS S R. The surprise element: jumps in interest rates[J]. Journal of Econometrics,2002,106(1): 27-65. DOI:10.1016/S0304-4076(01)00085-9.
[11] JOHANNES M. The statistical and economic role of jumps in continuous-time interest rate models[J]. The Journal of Finance,2004,59(1): 227-260. DOI:10.1111/j.1540-6321.2004.00632.x.
[12] PIAZZESI M. Bond yields and the federal reserve[J]. Journal of Political Economy,2005,113(2): 311-344. DOI:10.1086/427466.
[13] ANDERSEN T,BENZONI L,LUND J. Stochastic volatility,mean drift,and jumps in the short-term interest rate[R]. Chicago: Northwestern University, 2004.
[14] JARROW R,LI Haitao,ZHAO Feng. Interest rate caps "smile" too! But can the LIBOR market models capture the smile?[J]. The Journal of Finance,2007,62(1): 345-382. DOI:10.1111/j.1540-6261.2007.01209.x.
[15] LIN B H,YEH S K. Jump-diffusion interest rate process: an empirical examination[J]. Journal of Business Finance and Accounting,1999,26(7/8): 967-995. DOI:10.1111/1468-5957.00282.
[16] 陈松男. 利率衍生品设计原理与应用: 案例分析[M]. 北京: 机械工业出版社,2014.
[17] AHN C M,THOMPSON H E. Jump-diffusion processes and the term structure of interest rates[J]. The Journal of Finance,1988,43(1): 155-174. DOI:10.1111/j.1540-6261.1988.tb02595.x.
[18] SHIRAKAWA H. Interest rate option pricing with Poisson-Gaussian forward rate curve process[J]. Mathematical Finance,1991,1(4): 77-94. DOI:10.1111/j.1467-9965.1991.tb00020.x.
[19] BAZ J,DAS S R. Analytical approximations of the term structure for jump-diffusion process: a numerical analysis[J]. The Journal of Fixed Income,1996,6(1): 78-86. DOI:10.3905/jfi.1996.408164.
[20] DAS S R,FORESI S. Exact solutions for bond and option prices with systematic jump risk[J]. Review of Derivatives Research,1996,1(1): 7-24. DOI:10.1007/BF01536393.
[21] DAS S R. Discrete-time bond and option pricing for jump-diffusion processes[J]. Review of Derivatives Research,1996,1(3): 211-243. DOI:10.1007/BF01531143.
[22] DAS S R. A direct discrete-time approach to Poisson-Gaussian bond option pricing in the Heath-Jarrow-Morton model[J]. J Econ Dyn Control,1998,23(3): 333-369. DOI:10.1016/S0165-1889(98)00031-1.
[23] FINNERTY J D. Exact formulas for pricing bonds and options when interest rate diffusions contain jumps[J]. The Journal of Financial Research,2005,28(3): 319-341. DOI:10.1111/j.1475-6803.2005.00127.x.
[24] BELIAEVA N A,NAWALKHA S K,SOTO G M. Pricing American interest rate options under the jump-extended Vasicek model[J]. Journal of Derivatives,2008,16(1): 29-43. DOI:10.3905/jod.2008.710896.
[25] BELIAEVA N,NAWALKHA S K. Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models[J]. Journal of Banking & Finance,2012,36(1): 151-163. DOI:10.1016/j.jbankfin.2011.06.012.
[26] DENG Guohe. Pricing American put option on zero-coupon bond in a jump-extended CIR model[J]. Commun Nonlinear Sci Numer Simulat,2015,22(1/2/3): 186-196. DOI:10.1016/j.cnsns.2014.10.003.
[27] DUFFIE D,PAN Jun,SINGLETON K. Transform analysis and asset pricing for affine jump-diffusions[J]. Econometrica,2000,68(6): 1343-1376. DOI:10.1111/1468-0262.00164.
[28] GEMAN H, KAROUI N E,ROCHET J C. Changes of numeraire,changes of probability measures and option pricing[J]. Journal of Applied Probability,1995,32(2): 443-458. DOI:10.2307/3215299.
[1] 温玉卓, 唐胜达, 邓国和. 随机环境下具有阈值分红策略的风险过程的破产时间分析[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 56-62.
[2] 温玉卓, 唐胜达, 邓国和. 随机环境下相关多险种风险过程破产时间的Asmussen算法[J]. 广西师范大学学报(自然科学版), 2016, 34(3): 68-73.
[3] 徐蕾, 邓国和. 随机波动率模型下欧式回望期权定价[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 79-90.
[4] 邓国和. Heston模型的欧式任选期权定价与对冲策略[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 36-43.
[5] 唐胜达, 秦永松. Markov随机环境过程驱动的风险过程[J]. 广西师范大学学报(自然科学版), 2012, 30(1): 35-39.
[6] 唐胜达, 秦永松. 带干扰的MAP风险过程的期望贴现惩罚函数[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 23-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发