|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (2): 140-148.doi: 10.16088/j.issn.1001-6600.2021041901
刘奇文1,2, 李丹1,2, 黄小芳1,2, 梁爱惠1,2*, 蒋治良1,2*
LIU Qiwen1,2, LI Dan1,2, HUANG Xiaofang1,2, LIANG Aihui1,2*, JIANG Zhiliang1,2*
摘要: 在pH=3.1的HCOOH-HCOONa缓冲液中,磷钼酸粒子在450 nm处产生一个共振瑞利散射(RRS)峰。金纳米粒子(AuNPs)可催化磷钼酸-甲酸反应生成磷钼蓝,使得450 nm处磷钼酸的RRS强度线性降低。Hg2+可与AuNPs发生电置换反应,从而抑制AuNPs的催化作用,RRS峰增强。在2.5×10-4~3.5 μmol/L,随着Hg2+浓度的增加,AuNPs的催化作用逐渐减弱,反应液的颜色逐渐从蓝色变为无色,体系在450 nm处的RRS峰值(ΔI)线性增高,其线性方程为ΔI=0.32C+46.1,检出限为0.18 nmol/L。该法用于废水中Hg2+的检测,结果令人满意。
中图分类号:
[1] ZHANG C L, LUO L, LUO J, et al. A process-analysis microsystem based on density gradient centrifugation and its application in the study of the galvanic replacement mechanism of Ag nanoplates with HAuCl4[J]. Chemical Communications, 2012, 48(58): 7241-7243. [2] JAIN P K, HUANG X H, EL-SAYED I H, et al. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Accounts of Chemical Research, 2008, 41: 1578-1586. [3] LU X M, CHEN J Y, SKRABALAK S E, et al. Galvanic replacement reaction: a simple and powerful route to hollow and porous metal nanostructures[J]. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2007, 221(1): 1-16. [4] SUN Y G, MAYERS B T, XIA Y N. Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors[J]. Nano Letters, 2002, 2(5): 481-485. [5] LIU G L, FENG D Q, ZHENG W J, et al. An anti-galvanic replacement reaction of DNA templated silver nanoclusters monitored by the light-scattering technique[J]. Chemical Communications, 2013, 49: 7941-7943. [6] BI Y P, YE J H. Heteroepitaxial growth of platinum nanocrystals on AgCl nanotubes via galvanic replacement reaction[J]. Chemical Communications, 2010, 46: 1532-1534. [7] NETZER N L, TANAKA Z, CHEN B, et al. Tailoring the SERS enhancement mechanisms of silver nanowire Langmuir-Blodgett films via galvanic replacement reaction[J]. Journal of Applied Physics. 2013, 117: 16187-16194. [8] WU H X, RONG M C, MA Y, et al. PVP-mediated galvanic replacement growth of AgNPs on copper foil for SERS sensing[J]. Micro and Nano Letters, 2020, 15: 590-594. [9] JIANG Z L, LI C N, LIU Y Y, et al. A sensitive galvanic replacement reaction-SERS method for Au(III) with Victoria blue B molecular probes in silver nanosol substrate[J]. Sensors and Actuators B: Chemical, 2017, 251: 404-409. [10] YANG H X, HOU J G, WANG Z H, et al. Porous PtAg nanoshells/reduced graphene oxide based biosensors for low-potential detection of NADH[J]. Microchimica Acta, 2020, 187: 544. [11] LI J B, WANG J H, ZHANG X X, et al. Highly selective detection of epidermal growth factor receptor by multifunctional gold-nanoparticle-based resonance Rayleigh scattering method[J]. Sensors and Actuators B: Chemical, 2018, 273: 1300-1306. [12] MA C J, ZHANG W A, SU Z Q, et al. Resonance Rayleigh scattering method for the determination of chitosan using erythrosine B as a probe and PVA as sensitization[J]. Food Chemistry, 2018, 239: 126-131. [13] LIANG A H, WANG Y H, WEN G Q, et al. A silver nanorod resonance Rayleigh scattering-energy transfer analytical platform for trace tea polyphenols[J]. Food Chemistry, 2016, 197(Part A): 395-399. [14] 李重宁, 潘宏程, 刘庆业, 等. 多肽探针结合纳米银催化反应-吸收测定HCG[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 91-97. [15] WANG H L, LIANG A H, WEN G Q, et al. A simple SPR absorption method for ultratrace Pb2+ based on DNA zyme-COFPd nanocatalysis of Ni-P alloy reaction[J]. Sensors and Actuators B: Chemical, 2021, 330: 129381-129387. [16] ZHANG Z H, LEI K N, LI C N, et al. A new and facile nanosilver SPR colored method for ultratrace arsenic based on aptamer regulation of Au-doped carbon dot catalytic amplification[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 232: 118174-118182. [17] LI C P, NIU Q F, WANG J G, et al. Bithiophene-based fluorescent sensor for highly sensitive and ultrarapid detection of Hg2+ in water, seafood, urine and live cells[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 233: 118208-118214. [18] CHEN C G, VIJAY N, THIRUMALAIYASAN N, et al. Coumarin-based Hg2+ fluorescent probe: fluorescence turn-on detection for Hg2+ bioimaging in living cells and zebrafish[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 219: 135-140. [19] TAN L L, CHEN Z B, ZHANG C, et al. Colorimetric detection of Hg2+ based on the growth of aptamer-coated AuNPs: the effect of prolonging aptamer strands[J]. Small, 2017, 13(14): 1603370-1603376. [20] XING H K, XU J K, ZHU X F, et al. A new electrochemical sensor based on carboimidazole grafted reduced graphene oxide for simultaneous detection of Hg2+ and Pb2+[J]. Journal of Electroanalytical Chemistry, 2016, 782: 250-255. [21] HU X, WANG W, HUANG Y M. Copper nanocluster-based fluorescent probe for sensitive and selective detection of Hg2+ in water and food stuff[J]. Talanta, 2016, 154: 409-415. [22] REN W, ZHANG Y, CHEN H G, et al. Ultrasensitive label-free resonance Rayleigh scattering aptasensor for Hg2+ using Hg2+-triggered exonuclease III-assisted target recycling and growth of G-wires for signal amplification[J]. Analytical Chemistry, 2016, 88(2): 1385-1390. [23] ZHANG S T, ZHANG D X, ZHANG X H, et al. Ultratrace naked-eye colorimetric detection of Hg2+ in wastewater and serum utilizing mercury-stimulated peroxidase mimetic activity of reduced graphene oxide-PEI-Pd nanohybrids[J]. Analytical Chemistry, 2017, 89(6): 3538-3544. [24] TAN F, CONG L C, SAUCEDO N M, et al. An electrochemically reduced graphene oxide chemiresistive sensor for sensitive detection of Hg2+ ion in water samples[J]. Journal of Hazardous Materials, 2016, 320: 226-233. [25] YU J, SONG N, ZHANG Y K, et al. Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+[J]. Sensors and Actuators B: Chemical, 2015, 214: 29-35. [26] NGERNPIMAI S, MATULAKUN P, TEERASONG S, et al. Gold nanorods enhanced resonance Rayleigh scattering for detection of Hg2+ by in-situ mixing with single-stranded DNA[J]. Sensors and Actuators B: Chemical, 2018,255(Part 1): 836-842. [27] TONG Y J, QI J X, SONG A M, et al. Electronic synergy between ligands of luminol and isophthalic acid for fluorescence ratiometric detection of Hg2+[J]. Analytica Chimica Acta, 2020, 1128: 11-18. [28] GAYATHRI J, SELVAN K S, NARAYANAN S S. Fabrication of carbon nanotube and synthesized octadentate ligand modified electrode for determination of Hg(II) in sea water and lake water using square wave anodic stripping voltammetry[J]. Sensing and Bio-Sensing Research, 2018, 19: 1-6. [29] MANIVANNAN S, KANG D K, KIM K. Silicate sol-gel functionalized rGO-Ag sensor-probe for spectral detection of Hg(II) ions[J]. Materials Research Bulletin, 2018, 106: 144-151. [30] SAENCHOOPA A, BOONTA W, TALODTHAISONG C, et al. Colorimetric detection of Hg(II) by γ-aminobutyric acid-silver nanoparticles in water and the assessment of antibacterial activities[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 251: 119433-119438. |
[1] | 刘庆业, 汪花, 黄丹华, 何世赫, 李娇, 罗钧恒, 张杏辉, 温桂清, 梁爱惠, 蒋治良. 碳纳米微粒共振瑞利散射能量转移测定铬(Ⅵ)[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 128-133. |
[2] | 李重宁, 汤雪萍, 邓雯靓, 温桂清, 刘庆业, 梁爱惠, 蒋治良. 钼催化-共振瑞利散射光谱法测定痕量溴酸根[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 111-116. |
[3] | 汤雪萍, 王耀辉, 刘庆业, 温桂清, 张杏辉, 罗杨合, 梁爱惠, 蒋治良. 纳米银催化共振瑞利散射光谱检测痕量肼[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 88-95. |
[4] | 董金超, 温桂清, 刘庆业, 梁爱惠, 蒋治良. 适配体修饰纳米金催化共振瑞利散射光谱法测定血红素[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 191-196. |
[5] | 蒋治良, 姚东梅, 韦燕燕. 金铂纳米合金催化磷钼蓝光度法测定半胱氨酸[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 59-66. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |