广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (2): 140-148.doi: 10.16088/j.issn.1001-6600.2021041901

• • 上一篇    下一篇

纳米金催化甲酸还原磷钼酸耦合电置换反应-共振瑞利散射测定痕量汞

刘奇文1,2, 李丹1,2, 黄小芳1,2, 梁爱惠1,2*, 蒋治良1,2*   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006;
    2.广西环境污染控制理论与技术重点实验室(广西师范大学),广西 桂林 541006
  • 收稿日期:2021-04-19 修回日期:2021-04-29 发布日期:2022-05-31
  • 通讯作者: 梁爱惠(1965—),女,广西岑溪人,广西师范大学研究员。E-mail:ahliang2008@163.com
    蒋治良(1965—),男,广西全州人,广西师范大学教授,博导。E-mail:zljiang@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(21767004)

A New Strategy for the Determination of Trace Mercury by Resonance Rayleigh Scattering Method Based on Nano-gold Catalytic Amplification and Galvanic Replacement Reaction-phosphomolybdic Acid

LIU Qiwen1,2, LI Dan1,2, HUANG Xiaofang1,2, LIANG Aihui1,2*, JIANG Zhiliang1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology (Guangxi Normal University), Guilin Guangxi 541006, China
  • Received:2021-04-19 Revised:2021-04-29 Published:2022-05-31

摘要: 在pH=3.1的HCOOH-HCOONa缓冲液中,磷钼酸粒子在450 nm处产生一个共振瑞利散射(RRS)峰。金纳米粒子(AuNPs)可催化磷钼酸-甲酸反应生成磷钼蓝,使得450 nm处磷钼酸的RRS强度线性降低。Hg2+可与AuNPs发生电置换反应,从而抑制AuNPs的催化作用,RRS峰增强。在2.5×10-4~3.5 μmol/L,随着Hg2+浓度的增加,AuNPs的催化作用逐渐减弱,反应液的颜色逐渐从蓝色变为无色,体系在450 nm处的RRS峰值(ΔI)线性增高,其线性方程为ΔI=0.32C+46.1,检出限为0.18 nmol/L。该法用于废水中Hg2+的检测,结果令人满意。

关键词: 汞, 纳米金催化, 静电取代, 磷钼蓝, 共振瑞利散射

Abstract: Phosphomolybdic acid particles have a resonance Rayleigh scattering (RRS) effect, which produces a RRS peak at 450 nm. In the HCOOH-HCOONa buffer solution at pH=3.1, gold nanoparticles (AuNPs) can catalyze the reaction of phosphomolybdic acid-formic acid to produce phosphomolybdenum blue, making the RRS intensity of phosphomolybdic acid linearly decrease at 450 nm. Hg2+ can undergo a galvanic replacement reaction with AuNPs, thereby inhibiting the catalytic effect of AuNPs. In the range of 2.5×10-4-3.5 μmol/L, as the concentration of Hg2+ increases, the catalytic effect of AuNPs gradually weakens, the color of the reaction solution gradually changed from blue to colorless, and the resonance Rayleigh scattering peak of the system at 450 nm increases linearly. The regression equation is ΔI=0.32C+46.1, and the detection limit is 0.18 nmol/L. This method is used for the detection of Hg2+ in wastewater, and the results are satisfactory.

Key words: mercury, nano-gold catalytic, galvanic replacement, phosphorus molybdenum blue, resonance Rayleigh scattering

中图分类号: 

  • O657.3
[1] ZHANG C L, LUO L, LUO J, et al. A process-analysis microsystem based on density gradient centrifugation and its application in the study of the galvanic replacement mechanism of Ag nanoplates with HAuCl4[J]. Chemical Communications, 2012, 48(58): 7241-7243.
[2] JAIN P K, HUANG X H, EL-SAYED I H, et al. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Accounts of Chemical Research, 2008, 41: 1578-1586.
[3] LU X M, CHEN J Y, SKRABALAK S E, et al. Galvanic replacement reaction: a simple and powerful route to hollow and porous metal nanostructures[J]. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2007, 221(1): 1-16.
[4] SUN Y G, MAYERS B T, XIA Y N. Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors[J]. Nano Letters, 2002, 2(5): 481-485.
[5] LIU G L, FENG D Q, ZHENG W J, et al. An anti-galvanic replacement reaction of DNA templated silver nanoclusters monitored by the light-scattering technique[J]. Chemical Communications, 2013, 49: 7941-7943.
[6] BI Y P, YE J H. Heteroepitaxial growth of platinum nanocrystals on AgCl nanotubes via galvanic replacement reaction[J]. Chemical Communications, 2010, 46: 1532-1534.
[7] NETZER N L, TANAKA Z, CHEN B, et al. Tailoring the SERS enhancement mechanisms of silver nanowire Langmuir-Blodgett films via galvanic replacement reaction[J]. Journal of Applied Physics. 2013, 117: 16187-16194.
[8] WU H X, RONG M C, MA Y, et al. PVP-mediated galvanic replacement growth of AgNPs on copper foil for SERS sensing[J]. Micro and Nano Letters, 2020, 15: 590-594.
[9] JIANG Z L, LI C N, LIU Y Y, et al. A sensitive galvanic replacement reaction-SERS method for Au(III) with Victoria blue B molecular probes in silver nanosol substrate[J]. Sensors and Actuators B: Chemical, 2017, 251: 404-409.
[10] YANG H X, HOU J G, WANG Z H, et al. Porous PtAg nanoshells/reduced graphene oxide based biosensors for low-potential detection of NADH[J]. Microchimica Acta, 2020, 187: 544.
[11] LI J B, WANG J H, ZHANG X X, et al. Highly selective detection of epidermal growth factor receptor by multifunctional gold-nanoparticle-based resonance Rayleigh scattering method[J]. Sensors and Actuators B: Chemical, 2018, 273: 1300-1306.
[12] MA C J, ZHANG W A, SU Z Q, et al. Resonance Rayleigh scattering method for the determination of chitosan using erythrosine B as a probe and PVA as sensitization[J]. Food Chemistry, 2018, 239: 126-131.
[13] LIANG A H, WANG Y H, WEN G Q, et al. A silver nanorod resonance Rayleigh scattering-energy transfer analytical platform for trace tea polyphenols[J]. Food Chemistry, 2016, 197(Part A): 395-399.
[14] 李重宁, 潘宏程, 刘庆业, 等. 多肽探针结合纳米银催化反应-吸收测定HCG[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 91-97.
[15] WANG H L, LIANG A H, WEN G Q, et al. A simple SPR absorption method for ultratrace Pb2+ based on DNA zyme-COFPd nanocatalysis of Ni-P alloy reaction[J]. Sensors and Actuators B: Chemical, 2021, 330: 129381-129387.
[16] ZHANG Z H, LEI K N, LI C N, et al. A new and facile nanosilver SPR colored method for ultratrace arsenic based on aptamer regulation of Au-doped carbon dot catalytic amplification[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 232: 118174-118182.
[17] LI C P, NIU Q F, WANG J G, et al. Bithiophene-based fluorescent sensor for highly sensitive and ultrarapid detection of Hg2+ in water, seafood, urine and live cells[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 233: 118208-118214.
[18] CHEN C G, VIJAY N, THIRUMALAIYASAN N, et al. Coumarin-based Hg2+ fluorescent probe: fluorescence turn-on detection for Hg2+ bioimaging in living cells and zebrafish[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 219: 135-140.
[19] TAN L L, CHEN Z B, ZHANG C, et al. Colorimetric detection of Hg2+ based on the growth of aptamer-coated AuNPs: the effect of prolonging aptamer strands[J]. Small, 2017, 13(14): 1603370-1603376.
[20] XING H K, XU J K, ZHU X F, et al. A new electrochemical sensor based on carboimidazole grafted reduced graphene oxide for simultaneous detection of Hg2+ and Pb2+[J]. Journal of Electroanalytical Chemistry, 2016, 782: 250-255.
[21] HU X, WANG W, HUANG Y M. Copper nanocluster-based fluorescent probe for sensitive and selective detection of Hg2+ in water and food stuff[J]. Talanta, 2016, 154: 409-415.
[22] REN W, ZHANG Y, CHEN H G, et al. Ultrasensitive label-free resonance Rayleigh scattering aptasensor for Hg2+ using Hg2+-triggered exonuclease III-assisted target recycling and growth of G-wires for signal amplification[J]. Analytical Chemistry, 2016, 88(2): 1385-1390.
[23] ZHANG S T, ZHANG D X, ZHANG X H, et al. Ultratrace naked-eye colorimetric detection of Hg2+ in wastewater and serum utilizing mercury-stimulated peroxidase mimetic activity of reduced graphene oxide-PEI-Pd nanohybrids[J]. Analytical Chemistry, 2017, 89(6): 3538-3544.
[24] TAN F, CONG L C, SAUCEDO N M, et al. An electrochemically reduced graphene oxide chemiresistive sensor for sensitive detection of Hg2+ ion in water samples[J]. Journal of Hazardous Materials, 2016, 320: 226-233.
[25] YU J, SONG N, ZHANG Y K, et al. Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+[J]. Sensors and Actuators B: Chemical, 2015, 214: 29-35.
[26] NGERNPIMAI S, MATULAKUN P, TEERASONG S, et al. Gold nanorods enhanced resonance Rayleigh scattering for detection of Hg2+ by in-situ mixing with single-stranded DNA[J]. Sensors and Actuators B: Chemical, 2018,255(Part 1): 836-842.
[27] TONG Y J, QI J X, SONG A M, et al. Electronic synergy between ligands of luminol and isophthalic acid for fluorescence ratiometric detection of Hg2+[J]. Analytica Chimica Acta, 2020, 1128: 11-18.
[28] GAYATHRI J, SELVAN K S, NARAYANAN S S. Fabrication of carbon nanotube and synthesized octadentate ligand modified electrode for determination of Hg(II) in sea water and lake water using square wave anodic stripping voltammetry[J]. Sensing and Bio-Sensing Research, 2018, 19: 1-6.
[29] MANIVANNAN S, KANG D K, KIM K. Silicate sol-gel functionalized rGO-Ag sensor-probe for spectral detection of Hg(II) ions[J]. Materials Research Bulletin, 2018, 106: 144-151.
[30] SAENCHOOPA A, BOONTA W, TALODTHAISONG C, et al. Colorimetric detection of Hg(II) by γ-aminobutyric acid-silver nanoparticles in water and the assessment of antibacterial activities[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 251: 119433-119438.
[1] 刘庆业, 汪花, 黄丹华, 何世赫, 李娇, 罗钧恒, 张杏辉, 温桂清, 梁爱惠, 蒋治良. 碳纳米微粒共振瑞利散射能量转移测定铬(Ⅵ)[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 128-133.
[2] 李重宁, 汤雪萍, 邓雯靓, 温桂清, 刘庆业, 梁爱惠, 蒋治良. 钼催化-共振瑞利散射光谱法测定痕量溴酸根[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 111-116.
[3] 汤雪萍, 王耀辉, 刘庆业, 温桂清, 张杏辉, 罗杨合, 梁爱惠, 蒋治良. 纳米银催化共振瑞利散射光谱检测痕量肼[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 88-95.
[4] 董金超, 温桂清, 刘庆业, 梁爱惠, 蒋治良. 适配体修饰纳米金催化共振瑞利散射光谱法测定血红素[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 191-196.
[5] 蒋治良, 姚东梅, 韦燕燕. 金铂纳米合金催化磷钼蓝光度法测定半胱氨酸[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 59-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡锦铭, 韦笃取. 不同阶次分数阶永磁同步电机的混合投影同步[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 1 -8 .
[2] 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9 -20 .
[3] 刘东, 周莉, 郑晓亮. 基于SA-DBN的超短期电力负荷预测[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 21 -33 .
[4] 张伟彬, 吴军, 易见兵. 基于RFB网络的特征融合管制物品检测算法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 34 -46 .
[5] 王金艳, 胡春, 高健. 一种面向知识编译的OBDD构造方法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 47 -54 .
[6] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55 -67 .
[7] 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68 -78 .
[8] 李松涛, 李群宏, 张文. 三自由度碰撞振动系统的余维二擦边分岔与混沌控制[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 79 -92 .
[9] 赵红涛, 刘志伟. λ重完全二部3-一致超图λK(3)n,n分解为超图双三角锥[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 93 -98 .
[10] 李梦, 曹庆先 , 胡宝清. 1960—2018年广西大陆海岸线时空变迁分析[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 99 -108 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发