广西师范大学学报(自然科学版) ›› 2015, Vol. 33 ›› Issue (2): 88-95.doi: 10.16088/j.issn.1001-6600.2015.02.014

• • 上一篇    下一篇

纳米银催化共振瑞利散射光谱检测痕量肼

汤雪萍1,2,3, 王耀辉1,2,3, 刘庆业1,2,3, 温桂清1,2,3, 张杏辉1,2,3, 罗杨合1,2,3, 梁爱惠1,2,3, 蒋治良1,2,3   

  1. 1. 广西师范大学珍稀濒危动植物生态与环境保护教育部重点实验室,广西桂林541004;
    2. 广西师范大学广西污染控制理论与技术重点实验室,广西桂林541004;
    3. 广西师范大学环境与资源学院,广西桂林541004
  • 收稿日期:2015-03-30 出版日期:2015-02-10 发布日期:2018-09-20
  • 通讯作者: 蒋治良(1965—),男,广西全州人,广西师范大学教授,博导。E-mail: zljiang@mailbox.gxnu.edu.cn
  • 作者简介:王耀辉和汤雪萍为共同第一作者。
  • 基金资助:
    国家自然科学基金资助项目(21477025,21465006,21267004,21367005,21365011,21467001,21447006,21307017);广西自然科学基金资助项目(2013GXNSFFA019003,2014GXNSFAA118050,2014GXNSFAA118059)

An Analytical Platform of Nanosilver SPR Rayleigh Scatteringand Its Application to Detect N2H4

TANG Xue-ping1,2,3, WANG Yao-hui1,2,3, LIU Qing-ye1,2,3, WEN Gui-qing1,2,3, ZHANG Xing-hui1,2,3,
LUO Yang-he1,2,3, LIANG Ai-hui1,2,3, JIANG Zhi-liang1,2,3   

  1. 1.Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education,Guangxi Normal University, Guilin Guangxi 541004, China;
    2. Guangxi Key Laboratory of Environmental Pollution ControlTheory and Technology, Guangxi Normal University, Guilin Guangxi 541004, China;
    3. College of Environment Scienceand Resources, Guangxi Normal University,Guilin Guangxi 541004, China
  • Received:2015-03-30 Online:2015-02-10 Published:2018-09-20

摘要: 在pH 6.2的Na2HPO4-柠檬酸缓冲溶液、水浴60 ℃条件下,纳米银粒子催化水合肼(N2H4)还原氯金酸(HAuCl4),Au3+被还原成单质金并吸附在金纳米表面,在370 nm处有一个较强的共振瑞利散射(RRS)峰。随着N2H4浓度的增大,生成的单质金越多,金纳米的粒径也逐渐增大,使得体系370 nm处的共振瑞利散射峰线性强度增大,从而构建纳米银催化RRS分析平台并用于检测N2H4。在选定条件下,N2H4的浓度在0.012 5~3.5 μmol/L范围内与共振散射峰强度增加值ΔI呈现良好线性关系,线性方程为ΔIRS=1 297.8C+228.78,检出限为0.006 μmol/L N2H4,该法测定了水样中的N2H4,结果令人满意。

关键词: 纳米金, 氯金酸, 共振瑞利散射, N2H4

Abstract: In pH 6.2 Na2HPO4-citric acid buffer solution, water bath 60 ℃, Au3+ from HAuCl4 was reduced to Au nanoflowers (AuNF) by hydrazine hydrate (N2H4)that catalyzed by silver nanoparticles (AgNPs)and growing around the AgNPs surface. Thus, the special AuNFs exhibited a strong resonance Rayleigh scattering (RRS)peak at 370 nm. With increase of N2H4 concentration, AuNFs gradually increased and formed the larger size AuNFs, and the RRS intensity was linearly increased. So, a simple and sensitive nanosilver catalytic reaction RRS analysis platform was fabricated which can be utilized to detect trace N2H4. Under the selected conditions, a linear relation between the increased RRS intensity (ΔI370 nm)and N2H4 concentration was found in the range of 0.012 5~3.5 μmol/L, with a regression equation of ΔIRS=1 297.8C+228.78, and detection limit of 0.006 μmol/L. The method was used for the detection of N2H4 in water sample with satisfactory results.

Key words: AgNP catalysis, HAuCl4, RRS, N2H4

中图分类号: 

  • O657.3
[1] HUANG Shi-wen,LI Ji-shun,LIANG Ai-hui,et al. High sensitive and selective detection of thrombin aptamer AgNPs resonance scattering spectral probe[J]. Acta Chimica Sinica, 2011, 69(2):183-189.
[2] ASLAN K,LAKOWICZ J R,GEDDES C D. Nanogold plasmon resonance-based glucose sensing.2. wavelength ratio metric resonance lights catering[J]. Analytical Chemistry, 2005, 7:2007-2014.
[3] ZHANG Min,YE Bang-ce. Colorimetric chiral recognition of enantiomers using the nucleotide-capped silver nanoparticles[J]. Analytical Chemistry, 2011, 83(5):1504-1509.
[4] 梁月园, 蒋治良, 江 波. 纳米金标记分析[J]. 分析测试技术与仪器,2007, 13(3):163-168.
[5] JIANG Zhi-liang, SUN Shuang-jiao, LIANG Ai-hui, et al. Gold-labeled nanoparticle-based immunoresonance scattering spectral assay for trace apolipoprotein AI and apolipoprotein B[J]. Clinical Chemistry, 2006, 52(7):1389-1394.
[6] ZHANG Zhi-feng, CUI Hua, LAI Chun-ze, et al. Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications[J]. Analytical Chemistry, 2005, 77(10):3324-3329.
[7] ZHOU Jian-hua, REN Kang-ning, ZHAO Yi-hua, et al. Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules[J]. Anal Bioanal Chem, 2012, 402:1601-1609.
[8] 国家环境保护总局,国家质量监督检验检疫总局. GB3838—2002.地表水环境质量标准[S].北京:中国环境科学出版社, 2002.
[9] GEORGE M, NAGARAJA K S, BALASUBRAMANIAN N. Spectrophotometric determination of hydrazine[J]. Talanta, 2008, 75:27-31.
[10] HASHMI M H, AYAZ A A, MAQBOOL A S. Determination of hydrazine by direct titration with hypobromite[J]. Fresen J Anal Chem, 1965, 6:417-419.
[11] ABBASPOUR A, MIRAHMADI E, KHAJEHZADEH A. Disposable sensor for quantitative determination of hydrazine in water and biological sample[J]. Anal Methods, 2010, 2:349-353.
[12] ENSAFI A A, REZAEI B. Flow injection determination of hydrazine with fluorimetric detection[J]. Talanta, 1998, 3:645-649.
[13] LI Fei, SONG Ji-xia, SHAN Chang-sheng, et al. Electrochemical determination of morphine at ordered mesoporous carbon modified glassy carbon electrode[J]. Biosens Bioelectron, 2010, 25:1408-1413.
[14] 中国国家标准化管理委员会.GB/T 5750.8-2006 水合肼对二甲氨基苯甲醛分光光度法[S].北京:中国标准出版社,2007.
[15] LIN Hai-lian, YANG Jian-mao, LIU Jian-yun, et al. Properties of Pd nanoparticles-embedded polyaniline multilayer film and its electrocatalytic activity for hydrazine oxidation[J]. Electrochimica Acta, 2013, 90:382-392.
[1] 刘庆业, 汪花, 黄丹华, 何世赫, 李娇, 罗钧恒, 张杏辉, 温桂清, 梁爱惠, 蒋治良. 碳纳米微粒共振瑞利散射能量转移测定铬(Ⅵ)[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 128-133.
[2] 李重宁, 汤雪萍, 邓雯靓, 温桂清, 刘庆业, 梁爱惠, 蒋治良. 钼催化-共振瑞利散射光谱法测定痕量溴酸根[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 111-116.
[3] 董金超, 温桂清, 刘庆业, 梁爱惠, 蒋治良. 适配体修饰纳米金催化共振瑞利散射光谱法测定血红素[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 191-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发