广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (6): 44-53.doi: 10.16088/j.issn.1001-6600.2020090601

• 研究论文 • 上一篇    下一篇

基于晶格Boltzmann方法研究曲面上接触角的测量算法

邵玉馥, 季婷婷, 姚怡辰, 闻炳海*   

  1. 广西师范大学 计算机科学与工程学院, 广西 桂林 541004
  • 收稿日期:2020-09-06 修回日期:2020-11-11 出版日期:2021-11-25 发布日期:2021-12-08
  • 通讯作者: 闻炳海(1974—), 男,河北沧州人, 广西师范大学教授, 博导。E-mail: oceanwen@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(11862003, 81860635); 广西自然科学基金重点项目(2017GXNSFDA198038); 广西师范大学研究生创新项目(XYCSZ2019067, JXXYYJSCXXM-004)

Research on Measurement Algorithm of Contact Angle on Curved Surface Based on Lattice Boltzmann Method

SHAO Yufu, JI Tingting, YAO Yichen, WEN Binghai*   

  1. School of Computer Science and Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2020-09-06 Revised:2020-11-11 Online:2021-11-25 Published:2021-12-08

摘要: 接触角是衡量液体在固体表面润湿的重要特征量。目前已经有一些方法模拟固体表面上液滴的接触角现象并测量接触角的大小,但曲面上液滴的接触角测量方法都较为复杂。本文基于化学势的多弛豫晶格Boltzmann方法,提出一种简单高效的测量曲面上液滴接触角的方法。对曲面基板设置一系列的化学势,通过计算曲面上固定液滴的接触角,观察不同化学势下液滴在曲面上的润湿性。在不考虑重力的理想情况下,本文方法得到的接触角和球冠法的计算结果相比,最大误差在3°左右,符合良好。在考虑重力的影响时,不同尺寸的液滴在重力作用下会发生不同程度的形变,此时球冠模型不再适用,而本文模型计算得到的接触角基本不变,与微观接触角和重力无关的理论预期一致。

关键词: 接触角测量, 曲面, 晶格Boltzmann方法, 化学势, 润湿性

Abstract: Contact angle is an important characteristic quantity to measure the wetting of liquid on solid surface. Although many methods can be used to simulate the contact angle phenomenon and measure the contact angle, there is still no simple method for measuring the contact angle on a curved surface. Based on the chemical potential lattice Boltzmann method, this paper proposes a method to measure the contact angle of droplets on curved surfaces. A series of chemical potentials are set for the curved substrate to calculate the contact angle of a fixed drop on the curved surface to observe the wettability under different chemical potentials. Under the ideal condition without considering the gravity, compared with the calculation result of the spherical cap method, the contact angle obtained by the new method has a maximum error of about 3 degrees, which is in good agreement. When the influence of gravity is considered, the droplet of different sizes undergo different deformation, and the spherical cap method is no longer applicable, but the contact angle obtained by the model in this paper is basically unchanged, which is consistent with the theoretical expectation that the microscopic contact angle and gravity are independent.

Key words: contact angle measurement, curved surface, lattice Boltzmann method, chemical potential, wettability

中图分类号: 

  • O647.11
[1] ZHANG X R,CAI X Z,JIN K R,et al. Determining the surface tension of two-dimensional nanosheets by a low-rate advancing contact angle measurement[J]. Langmuir,2019,35(25):8303-8315. DOI:10.1021/acs.langmuir.8b04104.
[2] STRZECHA K. A new image analysis algorithm for contact angle measurement at high temperature[J]. Measurement Science and Technology,2020,31(3):035403. DOI:10.1088/1361-6501/ab52b3.
[3] KUNG C H,SOW P K,ZAHIRI B,et al. Assessment and interpretation of surface wettability based on sessile droplet contact angle measurement: challenges and opportunities[J]. Advanced Materials Interfaces,2019,6(18):1900839. DOI:10.1002/admi.201900839.
[4] FARAZIN J,PIRGHOLI-GIVI G,AZIZIAN-KALANDARAGH Y. Wettability measurement,optical characteristics, and investigation of the quantum confinement effect of ZnS-scotch tape nanocomposite films prepared by successive ionic layer adsorption and reaction (SILAR) method[J]. Physica B:Condensed Matter,2019,564:94-103. DOI:10.1016/j.physb.2019.03.034.
[5] DANISH M,NADHARI W N A W,AHMAD T,et al. Surface measurement of binderless bio-composite particleboard through contact angle and fractal surfaces[J]. Measurement, 2019,140:365-372. DOI:10.1016/j.measurement.2019.03.049.
[6] HOORFAR M,NEUMANN A W. Axisymmetric drop shape analysis (ADSA) for the determination of surface tension and contact angle[J]. The Journal of Adhesion,2004,80(8):727-743. DOI:10.1080/00218460490477684.
[7] HOORFAR M,NEUMANN A W. Recent progress in axisymmetric drop shape analysis (ADSA)[J]. Advances in Colloid and Interface Science, 2006,121(1/2/3):25-49. DOI:10.1016/j.cis.2006.06.001.
[8] BENZI R,BIFERALE L,SBRAGAGLIA M,et al. Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle[J]. Physical review E,2006,74(2):021509. DOI:10.1103/PhysRevE.74.021509.
[9] EXTRAND C W,MOON S I. Contact angles on spherical surfaces[J]. Langmuir,2008,24(17):9470-9473. DOI:10.1021/la801091n.
[10] DING H,SPELT P D M. Wetting condition in diffuse interface simulations of contact line motion[J]. Physical Review E,2007,75(4):046708. DOI:10.1103/PhysRevE.75.046708.
[11] DONG S. On imposing dynamic contact-angle boundary conditions for wall-bounded liquid-gas flows[J]. Computer Methods in Applied Mechanics and Engineering,2012,247/248:179-200. DOI:10.1016/j.cma.2012.07.023.
[12] EXTRAND C W,MOON S I. Indirect methods to measure wetting and contact angles on spherical convex and concave surfaces [J]. Langmuir,2012, 28(20):7775-7779. DOI:10.1021/la301312v.
[13] BORMASHENKO E. Wetting of flat and rough curved surfaces[J]. The Journal of Physical Chemistry C,2009,113(40):17275-17277. DOI:10.1021/jp905237v.
[14] GUILIZZONI M. Drop shape visualization and contact angle measurement on curved surfaces[J]. Journal of Colloid and Interface Science,2011,364(1):230-236. DOI:10.1016/j.jcis.2011.08.019.
[15] 黄兵方,闻炳海,邱文,等. 基于晶格Boltzmann方法的接触角实时测量研究[J]. 广西师范大学学报(自然科学版),2018,36(1):34-43. DOI:10.16088/j.issn.1001-6600.2018.01.005.
[16] WEN B H,HUANG B F,QIN Z G,et al.Contact angle measurement in lattice Boltzmann method[J]. Computers and Mathematics with Applications,2018,76(7):1686-1698. DOI:10.1016/j.camwa.2018.07.021.
[17] 邱文,叶勇,周思浩,等. 基于晶格Boltzmann方法研究微液滴形变中接触角[J]. 广西师范大学学报(自然科学版), 2019, 37(2):27-37. DOI:10.16088/j.issn.1001-6600.2019.02.004.
[18] PREMNATH K N,ABRAHAM J. Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow[J]. Journal of Computational Physics,2007,224(2):539-559. DOI:10.1016/j.jcp.2006.10.023.
[19] D’HUMIÈRES D. Generalized lattice-Boltzmann equations[M]//WEAVER D P,SHIZGAL B D. Rarefied gas dynamics: theory and simulations. New York:American Institute of Aeronautics and Astronautics, Inc.,1994:450-458. DOI:10.2514/5.9781600866319.0450.0458.
[20] LIANG H,LI Y,CHEN J X,et al. Axisymmetric lattice Boltzmann model for multiphase flows with large density ratio [J]. International Journal of Heat and Mass Transfer,2019,130:1189-1205. DOI:10.1016/j.ijheatmasstransfer.2018.09.050.
[21] CHEN S Y,DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics,1998,30:329-364. DOI:10.1146/annurev.fluid.30.1.329.
[22] AIDUN C K,CLAUSEN J R. Lattice-Boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42:439-472. DOI:10.1146/annurev-fluid-121108-145519.
[23] LI Q,LUO K H,KANG Q J,et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer[J]. Progress in Energy and Combustion Science,2016,52:62-105. DOI:10.1016/j.pecs.2015.10.001.
[24] HE Y L,LIU Q,LI Q,et al. Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: a review[J]. International Journal of Heat and Mass Transfer,2019,129:160-197. DOI: 10.1016/j.ijheatmasstransfer.2018.08.135.
[25] XU A,SHYY W,ZHAO T S. Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries[J]. Acta Mechanica Sinica,2017,33(3):555-574. DOI:10.1007/s10409-017-0667-6.
[26] LI Y Y,WANG J X,CHEN X. Can a toilet promote virus transmission? From a fluid dynamics perspective[J]. Physics of Fluids, 2020,32(6):065107.DOI:10.1063/5.0013318.2.
[27] LI Q,YU Y,LUO K H. Implementation of contact angles in the pseudopotential lattice Boltzmann simulations with curved boundaries[J]. Physical review E,2019,100(5):053313. DOI:10.1103/PhysRevE.100.053313.
[28] GUO Z L,ASINARI P,ZHENG C G. Lattice Boltzmann equation for microscale gas flows of binary mixtures[J]. Physical Review E,2009,79(2):026702. DOI:10.1103/PhysRevE.79.026702.
[29] WEN B H,ZHANG C Y,TU Y S,et al. Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations[J]. Journal of Computational Physics,2014,266:161-170. DOI:10.1016/j.jcp.2014.02.018.
[30] WEN B H,ZHAO L,QIU W,et al. Chemical-potential multiphase lattice Boltzmann method with superlarge density ratios [J]. Physical Review E,2020, 102(1):013303. DOI:10.1103/PhysRevE.102.013303.
[31] JAMET D,TORRES D,BRACKBILL J U. On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method[J]. Journal of Computational Physics,2002,182(1):262-276. DOI:10.1006/jcph.2002.7165.
[32] WEN B H,ZHOU X,HE B,et al. Chemical-potential-based lattice Boltzmann method for nonideal fluids[J]. Physical Review E ,2017,95(6):063305. DOI:10.1103/PhysRevE.95.063305.
[33] WEN B H,QIN Z R,ZHANG C Y,et al. Thermodynamic-consistent lattice Boltzmann model for nonideal fluids[J]. EPL (Europhysics Letters),2015,112(4):44002. DOI:10.1209/0295-5075/112/44002.
[1] 管羿鸣, 季婷婷, 杨鑫宇, 闻炳海. 液滴在化学异构表面上侧向弹跳的计算机模拟研究[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 90-100.
[2] 赵金想, 陈燕雁, 覃章荣, 张超英. 一种基于化学势LBM多相流模型的改进方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 87-95.
[3] 邱文, 叶勇, 周思浩, 闻炳海. 基于晶格Boltzmann方法研究微液滴形变中接触角[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 27-37.
[4] 黄兵方,闻炳海,邱文,赵琬玲,陈燕雁. 基于晶格Boltzmann方法的接触角实时测量研究[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 34-43.
[5] 李景文, 王珂, 叶良松, 刘华尧, 王翰钊. 基于RBF神经网络的地理时空信息预测推理方法[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 59-65.
[6] 张超英, 黎槟华, 覃章荣. 基于CUDA的晶格Boltzmann并行算法的综合优化设计[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 142-148.
[7] 邱冰, 王立龙, 薛泽, 李华兵. 用晶格Boltzmann方法研究微血管脉动流中悬浮颗粒运动特征的转变[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡锦铭, 韦笃取. 不同阶次分数阶永磁同步电机的混合投影同步[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 1 -8 .
[2] 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9 -20 .
[3] 刘东, 周莉, 郑晓亮. 基于SA-DBN的超短期电力负荷预测[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 21 -33 .
[4] 张伟彬, 吴军, 易见兵. 基于RFB网络的特征融合管制物品检测算法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 34 -46 .
[5] 王金艳, 胡春, 高健. 一种面向知识编译的OBDD构造方法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 47 -54 .
[6] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55 -67 .
[7] 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68 -78 .
[8] 李松涛, 李群宏, 张文. 三自由度碰撞振动系统的余维二擦边分岔与混沌控制[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 79 -92 .
[9] 赵红涛, 刘志伟. λ重完全二部3-一致超图λK(3)n,n分解为超图双三角锥[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 93 -98 .
[10] 李梦, 曹庆先 , 胡宝清. 1960—2018年广西大陆海岸线时空变迁分析[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 99 -108 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发