|
广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (6): 44-53.doi: 10.16088/j.issn.1001-6600.2020090601
邵玉馥, 季婷婷, 姚怡辰, 闻炳海*
SHAO Yufu, JI Tingting, YAO Yichen, WEN Binghai*
摘要: 接触角是衡量液体在固体表面润湿的重要特征量。目前已经有一些方法模拟固体表面上液滴的接触角现象并测量接触角的大小,但曲面上液滴的接触角测量方法都较为复杂。本文基于化学势的多弛豫晶格Boltzmann方法,提出一种简单高效的测量曲面上液滴接触角的方法。对曲面基板设置一系列的化学势,通过计算曲面上固定液滴的接触角,观察不同化学势下液滴在曲面上的润湿性。在不考虑重力的理想情况下,本文方法得到的接触角和球冠法的计算结果相比,最大误差在3°左右,符合良好。在考虑重力的影响时,不同尺寸的液滴在重力作用下会发生不同程度的形变,此时球冠模型不再适用,而本文模型计算得到的接触角基本不变,与微观接触角和重力无关的理论预期一致。
中图分类号:
[1] ZHANG X R,CAI X Z,JIN K R,et al. Determining the surface tension of two-dimensional nanosheets by a low-rate advancing contact angle measurement[J]. Langmuir,2019,35(25):8303-8315. DOI:10.1021/acs.langmuir.8b04104. [2] STRZECHA K. A new image analysis algorithm for contact angle measurement at high temperature[J]. Measurement Science and Technology,2020,31(3):035403. DOI:10.1088/1361-6501/ab52b3. [3] KUNG C H,SOW P K,ZAHIRI B,et al. Assessment and interpretation of surface wettability based on sessile droplet contact angle measurement: challenges and opportunities[J]. Advanced Materials Interfaces,2019,6(18):1900839. DOI:10.1002/admi.201900839. [4] FARAZIN J,PIRGHOLI-GIVI G,AZIZIAN-KALANDARAGH Y. Wettability measurement,optical characteristics, and investigation of the quantum confinement effect of ZnS-scotch tape nanocomposite films prepared by successive ionic layer adsorption and reaction (SILAR) method[J]. Physica B:Condensed Matter,2019,564:94-103. DOI:10.1016/j.physb.2019.03.034. [5] DANISH M,NADHARI W N A W,AHMAD T,et al. Surface measurement of binderless bio-composite particleboard through contact angle and fractal surfaces[J]. Measurement, 2019,140:365-372. DOI:10.1016/j.measurement.2019.03.049. [6] HOORFAR M,NEUMANN A W. Axisymmetric drop shape analysis (ADSA) for the determination of surface tension and contact angle[J]. The Journal of Adhesion,2004,80(8):727-743. DOI:10.1080/00218460490477684. [7] HOORFAR M,NEUMANN A W. Recent progress in axisymmetric drop shape analysis (ADSA)[J]. Advances in Colloid and Interface Science, 2006,121(1/2/3):25-49. DOI:10.1016/j.cis.2006.06.001. [8] BENZI R,BIFERALE L,SBRAGAGLIA M,et al. Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle[J]. Physical review E,2006,74(2):021509. DOI:10.1103/PhysRevE.74.021509. [9] EXTRAND C W,MOON S I. Contact angles on spherical surfaces[J]. Langmuir,2008,24(17):9470-9473. DOI:10.1021/la801091n. [10] DING H,SPELT P D M. Wetting condition in diffuse interface simulations of contact line motion[J]. Physical Review E,2007,75(4):046708. DOI:10.1103/PhysRevE.75.046708. [11] DONG S. On imposing dynamic contact-angle boundary conditions for wall-bounded liquid-gas flows[J]. Computer Methods in Applied Mechanics and Engineering,2012,247/248:179-200. DOI:10.1016/j.cma.2012.07.023. [12] EXTRAND C W,MOON S I. Indirect methods to measure wetting and contact angles on spherical convex and concave surfaces [J]. Langmuir,2012, 28(20):7775-7779. DOI:10.1021/la301312v. [13] BORMASHENKO E. Wetting of flat and rough curved surfaces[J]. The Journal of Physical Chemistry C,2009,113(40):17275-17277. DOI:10.1021/jp905237v. [14] GUILIZZONI M. Drop shape visualization and contact angle measurement on curved surfaces[J]. Journal of Colloid and Interface Science,2011,364(1):230-236. DOI:10.1016/j.jcis.2011.08.019. [15] 黄兵方,闻炳海,邱文,等. 基于晶格Boltzmann方法的接触角实时测量研究[J]. 广西师范大学学报(自然科学版),2018,36(1):34-43. DOI:10.16088/j.issn.1001-6600.2018.01.005. [16] WEN B H,HUANG B F,QIN Z G,et al.Contact angle measurement in lattice Boltzmann method[J]. Computers and Mathematics with Applications,2018,76(7):1686-1698. DOI:10.1016/j.camwa.2018.07.021. [17] 邱文,叶勇,周思浩,等. 基于晶格Boltzmann方法研究微液滴形变中接触角[J]. 广西师范大学学报(自然科学版), 2019, 37(2):27-37. DOI:10.16088/j.issn.1001-6600.2019.02.004. [18] PREMNATH K N,ABRAHAM J. Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow[J]. Journal of Computational Physics,2007,224(2):539-559. DOI:10.1016/j.jcp.2006.10.023. [19] D’HUMIÈRES D. Generalized lattice-Boltzmann equations[M]//WEAVER D P,SHIZGAL B D. Rarefied gas dynamics: theory and simulations. New York:American Institute of Aeronautics and Astronautics, Inc.,1994:450-458. DOI:10.2514/5.9781600866319.0450.0458. [20] LIANG H,LI Y,CHEN J X,et al. Axisymmetric lattice Boltzmann model for multiphase flows with large density ratio [J]. International Journal of Heat and Mass Transfer,2019,130:1189-1205. DOI:10.1016/j.ijheatmasstransfer.2018.09.050. [21] CHEN S Y,DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics,1998,30:329-364. DOI:10.1146/annurev.fluid.30.1.329. [22] AIDUN C K,CLAUSEN J R. Lattice-Boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42:439-472. DOI:10.1146/annurev-fluid-121108-145519. [23] LI Q,LUO K H,KANG Q J,et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer[J]. Progress in Energy and Combustion Science,2016,52:62-105. DOI:10.1016/j.pecs.2015.10.001. [24] HE Y L,LIU Q,LI Q,et al. Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: a review[J]. International Journal of Heat and Mass Transfer,2019,129:160-197. DOI: 10.1016/j.ijheatmasstransfer.2018.08.135. [25] XU A,SHYY W,ZHAO T S. Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries[J]. Acta Mechanica Sinica,2017,33(3):555-574. DOI:10.1007/s10409-017-0667-6. [26] LI Y Y,WANG J X,CHEN X. Can a toilet promote virus transmission? From a fluid dynamics perspective[J]. Physics of Fluids, 2020,32(6):065107.DOI:10.1063/5.0013318.2. [27] LI Q,YU Y,LUO K H. Implementation of contact angles in the pseudopotential lattice Boltzmann simulations with curved boundaries[J]. Physical review E,2019,100(5):053313. DOI:10.1103/PhysRevE.100.053313. [28] GUO Z L,ASINARI P,ZHENG C G. Lattice Boltzmann equation for microscale gas flows of binary mixtures[J]. Physical Review E,2009,79(2):026702. DOI:10.1103/PhysRevE.79.026702. [29] WEN B H,ZHANG C Y,TU Y S,et al. Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations[J]. Journal of Computational Physics,2014,266:161-170. DOI:10.1016/j.jcp.2014.02.018. [30] WEN B H,ZHAO L,QIU W,et al. Chemical-potential multiphase lattice Boltzmann method with superlarge density ratios [J]. Physical Review E,2020, 102(1):013303. DOI:10.1103/PhysRevE.102.013303. [31] JAMET D,TORRES D,BRACKBILL J U. On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method[J]. Journal of Computational Physics,2002,182(1):262-276. DOI:10.1006/jcph.2002.7165. [32] WEN B H,ZHOU X,HE B,et al. Chemical-potential-based lattice Boltzmann method for nonideal fluids[J]. Physical Review E ,2017,95(6):063305. DOI:10.1103/PhysRevE.95.063305. [33] WEN B H,QIN Z R,ZHANG C Y,et al. Thermodynamic-consistent lattice Boltzmann model for nonideal fluids[J]. EPL (Europhysics Letters),2015,112(4):44002. DOI:10.1209/0295-5075/112/44002. |
[1] | 管羿鸣, 季婷婷, 杨鑫宇, 闻炳海. 液滴在化学异构表面上侧向弹跳的计算机模拟研究[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 90-100. |
[2] | 赵金想, 陈燕雁, 覃章荣, 张超英. 一种基于化学势LBM多相流模型的改进方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 87-95. |
[3] | 邱文, 叶勇, 周思浩, 闻炳海. 基于晶格Boltzmann方法研究微液滴形变中接触角[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 27-37. |
[4] | 黄兵方,闻炳海,邱文,赵琬玲,陈燕雁. 基于晶格Boltzmann方法的接触角实时测量研究[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 34-43. |
[5] | 李景文, 王珂, 叶良松, 刘华尧, 王翰钊. 基于RBF神经网络的地理时空信息预测推理方法[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 59-65. |
[6] | 张超英, 黎槟华, 覃章荣. 基于CUDA的晶格Boltzmann并行算法的综合优化设计[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 142-148. |
[7] | 邱冰, 王立龙, 薛泽, 李华兵. 用晶格Boltzmann方法研究微血管脉动流中悬浮颗粒运动特征的转变[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 7-11. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |