广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (5): 175-184.doi: 10.16088/j.issn.1001-6600.2024090302

• 数学与统计学 • 上一篇    下一篇

偏态纵向数据和生存数据的贝叶斯联合建模

汪韫頔, 戴家佳*, 毛围   

  1. 贵州大学 数学与统计学院,贵州 贵阳 550000
  • 收稿日期:2024-09-03 修回日期:2024-12-24 出版日期:2025-09-05 发布日期:2025-08-05
  • 通讯作者: 戴家佳(1976—),女,贵州黔西人,贵州大学教授,博士。E-mail:jjdai@gzu.edu.cn
  • 基金资助:
    国家自然科学基金(12361057)

Bayesian Joint Modeling of Skewed-Longitudinal and Survival Data

WANG Yundi, DAI Jiajia*, MAO Wei   

  1. School of Mathematics and Statistics, Guizhou University, Guizhou Guiyang 550000, China
  • Received:2024-09-03 Revised:2024-12-24 Online:2025-09-05 Published:2025-08-05

摘要: 在纵向数据分析中,模型误差的正态性是一种常规假设,但这一假设可能违背真实数据特征。此外,忽略纵向数据与生存数据之间的相关性可能会造成分析结果的偏差。为解决这些问题,本文首先提出一种贝叶斯联合模型,纵向过程使用误差项服从Skew-t分布的线性混合效应模型进行建模,生存过程使用Cox比例风险模型;然后,通过Metropolis-Hastings(MH)算法和Gibbs抽样对联合模型中的未知参数进行贝叶斯估计,数值模拟结果表明:与传统估计方法相比,Skew-t方法在数据拟合方面表现出更优的性能;最后,将该方法应用于AIDS数据分析,经验证,该方法能够达到良好的拟合效果和准确的参数估计。

关键词: 纵向数据, 生存数据, Skew-t分布, 贝叶斯估计, AIDS数据

Abstract: In longitudinal data analysis, the normality of model errors is a common assumption; however, this assumption may contradict the true characteristics of the data. Additionally, overlooking the correlation between longitudinal data and survival data can lead to biased analytical results. To address these issues, this paper proposes a Bayesian joint model: the longitudinal process is modeled using a linear mixed-effects model with error terms following a Skew-t distribution, while the survival process employs a Cox proportional hazards model. Bayesian estimation of the unknown parameters in the joint model is conducted using the Metropolis-Hastings (MH) algorithm and Gibbs sampling. Numerical simulation results indicate that the Skew-t method demonstrates superior performance in data fitting compared with the traditional estimation methods. Finally, this methodology is applied to the analysis of AIDS data, and validation confirms that it provides good fitting results and accurate parameter estimates.

Key words: longitudinal data, survival data, Skew-t distribution, Bayesian estimation, AIDS data

中图分类号:  O212.8

[1] GE L, TU J X, ZHANG H, et al. Modern methods for longitudinal data analysis, capabilities, caveats and cautions[J]. Shanghai Archives of Psychiatry, 2016, 28(5): 293-300. DOI: 10.11919/j.issn.1002-0829. 216081.
[2] FAUCETT C L, THOMAS D C. Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach[J]. Statistics in Medicine, 1996, 15(15): 1663-1685.
[3] IBRAHIM J G, CHU H T, CHEN L M. Basic concepts and methods for joint models of longitudinal and survival data[J]. Journal of Clinical Oncology, 2010, 28(16): 2796-2801. DOI: 10.1200/JCO.2009.25.0654.
[4] WULFSOHN M S, TSIATIS A A. A joint model for survival and longitudinal data measured with error[J]. Biometrics, 1997, 53(1): 330-339.
[5] AIRY G B. On the algebraical and numerical theory of errors of observations and the combination of observations[M]. 2nd ed. London: Macmillan,1861.
[6] HANSEN B E. Stochastic equicontinuity for unbounded dependent heterogeneous arrays[J]. Econometric Theory, 1996, 12(2): 347-359. DOI: 10.1017/s0266466600006629.
[7] CHEN G, LUO S. Bayesian hierarchical joint modeling using skew-normal/independent distributions[J]. Communications in Statistics-Simulation and Computation, 2018, 47(5): 1420-1438. DOI: 10.1080/03610918.2017.1315730.
[8] 李世君, 唐国强, 杜诗雪. 基于Skew-t-GJRGARCH(1, 1)模型的5G板块风险度量研究[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 56-63. DOI: 10.16088/j.issn.1001-6600.2020.05.007.
[9] 聂晓璐, 冯国双. 生存分析及其应用中的注意事项[J]. 慢性病学杂志, 2016, 17(10): 1065-1066, 1073. DOI: 10.16440/j.cnki.1674-8166.2016.10.001.
[10] 肖媛媛, 陈莹, 何利平, 等. 不同删失比例下AFT模型与Cox模型表现比较的模拟研究[J]. 中国卫生统计, 2017, 34(4): 676-680.
[11] 刘娟, 蔡婷婷, 胡涛. 左截断右删失数据下OLLGG分布的参数估计[J]. 首都师范大学学报(自然科学版), 2024, 45(1): 29-36. DOI: 10.19789/j.1004-9398.2024.01.004.
[12] BROWN E R, IBRAHIM J G. A Bayesian semiparametric joint hierarchical model for longitudinal and survival data[J]. Biometrics, 2003, 59(2): 221-228. DOI: 10.1111/1541-0420.00028.
[13] MARTINS R, SILVA G L, ANDREOZZI V. Bayesian joint modeling of longitudinal and spatial survival AIDS data[J]. Statistics in Medicine, 2016, 35(19): 3368-3384. DOI: 10.1002/sim.6937.
[14] ZHANG D J, CHEN M H, IBRAHIM J G, et al. Bayesian model assessment in joint modeling of longitudinal and survival data with applications to cancer clinical trials[J]. Journal of Computational and Graphical Statistics, 2017, 26(1): 121-133. DOI: 10.1080/10618600.2015.1117472.
[15] 舒婷, 罗幼喜, 李翰芳. 面板数据贝叶斯双惩罚分位回归方法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 150-165. DOI: 10.16088/j.issn.1001-6600.2021060917.
[16] 孙烨, 蒋京京, 王纯杰. 广义极值回归模型下现状数据的贝叶斯估计[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 82-90. DOI: 10.16088/j.issn.1001-6600.2021060907.
[17] SAHU S K, DEY D K, BRANCO M D. A new class of multivariate skew distributions with applications to Bayesian regression models[J]. Canadian Journal of Statistics, 2003, 31(2): 129-150. DOI: 10.2307/3316064.
[18] LEONARD T, HSU J S J. Bayesian methods: an analysis for statisticians and interdisciplinary researchers[M]. Cambridge: Cambridge University Press, 2001.
[19] BENDER R, AUGUSTIN T, BLETTNER M. Generating survival times to simulate Cox proportional hazards models[J]. Statistics in Medicine, 2005, 24(11): 1713-1723. DOI: 10.1002/sim.2059.
[20] RIZOPOULOS D. The R package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC[J]. Journal of Statistical Software, 2016, 72(7): 1-46. DOI: 10.18637/jss.v072.i07.
[21] GOLDMAN A I, CARLIN B P, CRANE L R, et al. Response of CD4 lymphocytes and clinical consequences of treatment using ddI or ddC in patients with advanced HIV infection[J]. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 1996, 11(2): 161-169. DOI: 10.1097/00042560-199602010-00007.
[1] 朱艳, 蔡静, 龙芳. 逐步Ⅰ型混合截尾下复合Rayleigh分布竞争失效产品部分步加寿命试验的统计分析[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 159-169.
[2] 龙芳, 蔡静, 朱艳. 逐步Ⅱ型混合截尾下Lomax分布多部件应力强度模型的可靠性分析[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 120-130.
[3] 孙烨, 蒋京京, 王纯杰. 广义极值回归模型下现状数据的贝叶斯估计[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 82-90.
[4] 林松, 尹长明. 两阶段Logit模型的惩罚广义估计方程估计的渐近性质[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 126-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 钟俏, 陈生龙, 唐聪聪. 水凝胶技术在微藻采收中的应用:现状、挑战与发展分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 16 -29 .
[2] 施慧露, 莫燕华, 骆海玉, 马姜明. 檵木乙酸乙酯萃取物抑菌活性研究[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 1 -8 .
[3] 贺青, 李栋, 罗思源, 贺寓东, 李彪, 王强. 超宽带里德堡原子天线技术研究进展[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 1 -19 .
[4] 黄仁慧, 张锐锋, 文晓浩, 闭金杰, 黄守麟, 李廷会. 基于复数协方差卷积神经网络的运动想象脑电信号解码方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 43 -56 .
[5] 田晟, 熊辰崟, 龙安洋. 基于改进PointNet++的城市道路点云分类方法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 1 -14 .
[6] 黎宗孝, 张健, 罗鑫悦, 赵嶷飞, 卢飞. 基于K-means和Adam-LSTM的机场进场航迹预测研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 15 -23 .
[7] 宋铭楷, 朱成杰. 基于H-WOA-GWO和区段修正策略的配电网故障定位研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 24 -37 .
[8] 韩烁, 江林峰, 杨建斌. 基于注意力机制PINNs方法求解圣维南方程[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 58 -68 .
[9] 李志欣, 匡文兰. 结合互注意力空间自适应和特征对集成判别的细粒度图像分类[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 69 -82 .
[10] 石天怡, 南新元, 郭翔羽, 赵濮, 蔡鑫. 基于改进ConvNeXt的苹果叶片病害分类算法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 83 -96 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发