|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (5): 175-184.doi: 10.16088/j.issn.1001-6600.2024090302
汪韫頔, 戴家佳*, 毛围
WANG Yundi, DAI Jiajia*, MAO Wei
摘要: 在纵向数据分析中,模型误差的正态性是一种常规假设,但这一假设可能违背真实数据特征。此外,忽略纵向数据与生存数据之间的相关性可能会造成分析结果的偏差。为解决这些问题,本文首先提出一种贝叶斯联合模型,纵向过程使用误差项服从Skew-t分布的线性混合效应模型进行建模,生存过程使用Cox比例风险模型;然后,通过Metropolis-Hastings(MH)算法和Gibbs抽样对联合模型中的未知参数进行贝叶斯估计,数值模拟结果表明:与传统估计方法相比,Skew-t方法在数据拟合方面表现出更优的性能;最后,将该方法应用于AIDS数据分析,经验证,该方法能够达到良好的拟合效果和准确的参数估计。
中图分类号: O212.8
| [1] GE L, TU J X, ZHANG H, et al. Modern methods for longitudinal data analysis, capabilities, caveats and cautions[J]. Shanghai Archives of Psychiatry, 2016, 28(5): 293-300. DOI: 10.11919/j.issn.1002-0829. 216081. [2] FAUCETT C L, THOMAS D C. Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach[J]. Statistics in Medicine, 1996, 15(15): 1663-1685. [3] IBRAHIM J G, CHU H T, CHEN L M. Basic concepts and methods for joint models of longitudinal and survival data[J]. Journal of Clinical Oncology, 2010, 28(16): 2796-2801. DOI: 10.1200/JCO.2009.25.0654. [4] WULFSOHN M S, TSIATIS A A. A joint model for survival and longitudinal data measured with error[J]. Biometrics, 1997, 53(1): 330-339. [5] AIRY G B. On the algebraical and numerical theory of errors of observations and the combination of observations[M]. 2nd ed. London: Macmillan,1861. [6] HANSEN B E. Stochastic equicontinuity for unbounded dependent heterogeneous arrays[J]. Econometric Theory, 1996, 12(2): 347-359. DOI: 10.1017/s0266466600006629. [7] CHEN G, LUO S. Bayesian hierarchical joint modeling using skew-normal/independent distributions[J]. Communications in Statistics-Simulation and Computation, 2018, 47(5): 1420-1438. DOI: 10.1080/03610918.2017.1315730. [8] 李世君, 唐国强, 杜诗雪. 基于Skew-t-GJRGARCH(1, 1)模型的5G板块风险度量研究[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 56-63. DOI: 10.16088/j.issn.1001-6600.2020.05.007. [9] 聂晓璐, 冯国双. 生存分析及其应用中的注意事项[J]. 慢性病学杂志, 2016, 17(10): 1065-1066, 1073. DOI: 10.16440/j.cnki.1674-8166.2016.10.001. [10] 肖媛媛, 陈莹, 何利平, 等. 不同删失比例下AFT模型与Cox模型表现比较的模拟研究[J]. 中国卫生统计, 2017, 34(4): 676-680. [11] 刘娟, 蔡婷婷, 胡涛. 左截断右删失数据下OLLGG分布的参数估计[J]. 首都师范大学学报(自然科学版), 2024, 45(1): 29-36. DOI: 10.19789/j.1004-9398.2024.01.004. [12] BROWN E R, IBRAHIM J G. A Bayesian semiparametric joint hierarchical model for longitudinal and survival data[J]. Biometrics, 2003, 59(2): 221-228. DOI: 10.1111/1541-0420.00028. [13] MARTINS R, SILVA G L, ANDREOZZI V. Bayesian joint modeling of longitudinal and spatial survival AIDS data[J]. Statistics in Medicine, 2016, 35(19): 3368-3384. DOI: 10.1002/sim.6937. [14] ZHANG D J, CHEN M H, IBRAHIM J G, et al. Bayesian model assessment in joint modeling of longitudinal and survival data with applications to cancer clinical trials[J]. Journal of Computational and Graphical Statistics, 2017, 26(1): 121-133. DOI: 10.1080/10618600.2015.1117472. [15] 舒婷, 罗幼喜, 李翰芳. 面板数据贝叶斯双惩罚分位回归方法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 150-165. DOI: 10.16088/j.issn.1001-6600.2021060917. [16] 孙烨, 蒋京京, 王纯杰. 广义极值回归模型下现状数据的贝叶斯估计[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 82-90. DOI: 10.16088/j.issn.1001-6600.2021060907. [17] SAHU S K, DEY D K, BRANCO M D. A new class of multivariate skew distributions with applications to Bayesian regression models[J]. Canadian Journal of Statistics, 2003, 31(2): 129-150. DOI: 10.2307/3316064. [18] LEONARD T, HSU J S J. Bayesian methods: an analysis for statisticians and interdisciplinary researchers[M]. Cambridge: Cambridge University Press, 2001. [19] BENDER R, AUGUSTIN T, BLETTNER M. Generating survival times to simulate Cox proportional hazards models[J]. Statistics in Medicine, 2005, 24(11): 1713-1723. DOI: 10.1002/sim.2059. [20] RIZOPOULOS D. The R package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC[J]. Journal of Statistical Software, 2016, 72(7): 1-46. DOI: 10.18637/jss.v072.i07. [21] GOLDMAN A I, CARLIN B P, CRANE L R, et al. Response of CD4 lymphocytes and clinical consequences of treatment using ddI or ddC in patients with advanced HIV infection[J]. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 1996, 11(2): 161-169. DOI: 10.1097/00042560-199602010-00007. |
| [1] | 朱艳, 蔡静, 龙芳. 逐步Ⅰ型混合截尾下复合Rayleigh分布竞争失效产品部分步加寿命试验的统计分析[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 159-169. |
| [2] | 龙芳, 蔡静, 朱艳. 逐步Ⅱ型混合截尾下Lomax分布多部件应力强度模型的可靠性分析[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 120-130. |
| [3] | 孙烨, 蒋京京, 王纯杰. 广义极值回归模型下现状数据的贝叶斯估计[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 82-90. |
| [4] | 林松, 尹长明. 两阶段Logit模型的惩罚广义估计方程估计的渐近性质[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 126-130. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |