2025年04月22日 星期二

广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (2): 1-19.doi: 10.16088/j.issn.1001-6600.2024022502

• 综述 •    下一篇

超宽带里德堡原子天线技术研究进展

贺青1, 李栋1,2, 罗思源1,2, 贺寓东1, 李彪1, 王强1*   

  1. 1.中国工程物理研究院电子工程研究所, 四川 绵阳 621900;
    2.中国工程物理研究院微系统与太赫兹研究中心, 四川 成都 610200
  • 收稿日期:2024-02-25 修回日期:2024-04-26 出版日期:2025-03-05 发布日期:2025-04-02
  • 通讯作者: 王强(1986—), 男, 湖北石首人, 中国工程物理研究院副研究员, 博士。E-mail: 383703313@qq.com
  • 基金资助:
    国家自然科学基金(12104423); 四川省自然科学基金青年基金项目(2024NSFSC1431); 中国工程物理研究院院长基金自立项目(YZJJZL2023054); 电子工程研究所科技创新基金(J23-02)

Research Progress in Ultra-wideband Rydberg Atomic Antenna Technology

HE Qing1, LI Dong1,2, LUO Siyuan1,2, HE Yudong1, LI Biao1, WANG Qiang1*   

  1. 1. Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang Sichuan 621900, China;
    2. Microsystems and Terahertz Research Center, China Academy of Engineering Physics, Chengdu Sichuan 610200, China
  • Received:2024-02-25 Revised:2024-04-26 Online:2025-03-05 Published:2025-04-02

摘要: 近年来,基于自由电子和电磁场相互作用的传统金属天线在带宽扩展、集成化、灵敏度等方面受到的限制愈发明显,基于里德堡原子的天线技术受到了广泛关注。作为一种高能态原子,里德堡原子用作电磁波的传感接收时,可实现不受Johnson-Nyquist 噪声限制的高灵敏度探测,避免传统金属天线的尺寸效应实现超宽带频谱响应,通过全光学的信号读取手段可有效提高系统抗电磁毁伤性能。得益于以上优势,基于里德堡原子天线的电磁波测量技术近年来已经在多方面展现出超越传统金属天线的性能,并预期将对现代雷达和通信等无线电技术产生颠覆性的影响和应用。本文主要综述里德堡原子的探测原理及其从直流到太赫兹的超宽带工作频谱研究进展,详细概述里德堡原子天线实现连续频率测量的国内外现状,并展望其未来发展趋势。

关键词: 里德堡原子, 超宽带, 原子天线, 太赫兹, 天线阵列

Abstract: In recent years, traditional metal antennas based on the interaction between free electrons and electromagnetic fields have become more and more limited in terms of bandwidth expansion, integration, and sensitivity. Antenna technology based on Rydberg atoms has received extensive attention. As highly excited state atoms, Rydberg atoms, when used as sensing receivers for electromagnetic waves, can achieve high sensitivity detection without being limited by Johnson-Nyquist noise, thereby avoiding the size effects of traditional metal antennas to achieve ultra-wideband frequency response. By utilizing all-optical signal readout methods, the system’s resilience to electromagnetic damage can be effectively improved. Thanks to these advantages, in recent years, electromagnetic wave measurement techniques based on Rydberg atom antennas have demonstrated performance surpassing traditional metal antennas in various aspects, and are expected to have a disruptive impact and applications in modern radar and wireless communication technologies. This article primarily reviews the detection principles of Rydberg atoms and the research progress from DC to terahertz ultra-wideband operating spectrum detection, comprehensively outlines the current domestic and international status of Rydberg atom antennas for continuous frequency measurement, and outlines their future development trends.

Key words: Rydberg atom, ultra-wideband, atomic antenna, terahertz, antenna arrays

中图分类号:  TN822.8

[1] MOKOLE E L, SABATH F. Ultrawideband technologies and applications [guest editorial] [J]. IEEE Antennas and Propagation Magazine, 2018, 60(3): 8-9. DOI: 10.1109/MAP.2018.2820006.
[2] Federal Communication Commission. First report and order, revision of part of the commission’s rules regarding ultra-wideband transmission systems: FCC02-48[R]. [S.l.] : [s.n.] , 2002.
[3] ZHONG S S, LIANG X L. Progress in ultra-wideband planar antennas[J]. Journal of Shanghai University (English Edition), 2007, 11(2): 95-101. DOI: 10.1007/s11741-007-0201-3.
[4] CADILHON B, PÉCASTAING L, REESS T, et al. High pulsed power sources for broadband radiation[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2593-2603. DOI: 10.1109/TPS.2010.2042732.
[5] ZHANG T T, CHEN Y K, LIU Z Y, et al. A low-scattering Vivaldi antenna array with slits on nonradiating edges[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(2): 1999-2004. DOI: 10.1109/TAP.2022.3232690.
[6] DESRUMAUX L, GODARD A, LALANDE M, et al. An original antenna for transient high power UWB arrays: the Shark antenna[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(8): 2515-2522. DOI: 10.1109/TAP.2010.2050418.
[7] ELMANSOURI M A, HA J, FILIPOVIC D S. Ultrawideband TEM horn circular array[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1374-1379. DOI: 10.1109/TAP.2016.2637871.
[8] DE LEON N P, ITOH K M, KIM D, et al. Materials challenges and opportunities for quantum computing hardware[J]. Science, 2021, 372(6539): eabb2823. DOI: 10.1126/science.abb2823.
[9] JI W T, ZHANG L, WANG M Q, et al. Quantum simulation for three-dimensional chiral topological insulator[J]. Physical Review Letters, 2020, 125(2): 020504. DOI: 10.1103/PhysRevLett.125.020504.
[10] GONG M, WANG S Y, ZHA C, et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor[J]. Science, 2021, 372(6545): 948-952. DOI: 10.1126/science.abg7812.
[11] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510. DOI: 10.1038/s41586-019-1666-5.
[12] XUE X, RUSS M, SAMKHARADZE N, et al. Quantum logic with spin qubits crossing the surface code threshold[J]. Nature, 2022, 601(7893): 343-347. DOI: 10.1038/s41586-021-04273-w.
[13] NOIRI A, TAKEDA K, NAKAJIMA T, et al. Fast universal quantum gate above the fault-tolerance threshold in Silicon[J]. Nature, 2022, 601(7893): 338-342. DOI: 10.1038/s41586-021-04182-y.
[14] HAROCHE S. Nobel lecture: controlling photons in a box and exploring the quantum to classical boundary[J]. Reviews of Modern Physics, 2013, 85(3): 1083-1102. DOI: 10.1103/RevModPhys.85.1083.
[15] LI W H, MOURACHKO I, NOEL M W, et al. Millimeter-wave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np, and nd series[J]. Physical Review A, 2003, 67(5): 052502. DOI: 10.1103/PhysRevA.67.052502.
[16] FACON A, DIETSCHE E K, GROSSO D, et al. A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state[J]. Nature, 2016, 535(7611): 262-265. DOI: 10.1038/nature18327.
[17] LIAO K Y, TU H T, YANG S Z, et al. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms[J]. Physical Review A, 2020, 101(5): 053432. DOI: 10.1103/PhysRevA.101.053432.
[18] XIAO M, LI Y Q, JIN S Z, et al. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms[J]. Physical Review Letters, 1995, 74(5): 666-669. DOI: 10.1103/PhysRevLett.74.666.
[19] MOHAPATRA A K, BASON M G, BUTSCHER B, et al. A giant electro-optic effect using polarizable dark states[J]. Nature Physics, 2008, 4(11): 890-894. DOI: 10.1038/nphys1091.
[20] AUTLER S H, TOWNES C H. Stark effect in rapidly varying fields[J]. Physical Review, 1955, 100(2): 703-722. DOI: 10.1103/PhysRev.100.703.
[21] SEDLACEK J A, SCHWETTMANN A, KÜBLER H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 2012, 8(11): 819-824. DOI: 10.1038/nphys2423.
[22] 廖开宇,涂海涛,张新定,等.基于里德堡原子的微波传感与通信[J].中国科学(物理学 力学 天文学),2021,51(7):3-16.DOI: 10.1360/SSPMA-2020-0218.
[23] STARK J. Observation of the separation of spectral lines by an electric field[J]. Nature, 1913, 92(2301): 401-401. DOI: 10.1038/092401b0.
[24] LIU B, ZHANG L H, LIU Z K, et al. Electric field measurement and application based on Rydberg atoms[J]. Electromagnetic Science, 2023, 1(2): 1-16. DOI: 10.23919/emsci.2022.0015.
[25] DELONE N B, KRAINOV V P. AC stark shift of atomic energy levels[J]. Physics-Uspekhi, 1999, 42(7): 669-687. DOI: 10.1070/PU1999v042n07ABEH000557.
[26] BAKOS J S. AC stark effect and multiphoton processes in atoms[J]. Physics Reports, 1977, 31(3): 209-235. DOI: 10.1016/0370-1573(77)90016-3.
[27] MEYER D H, KUNZ P D, COX K C. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz[J]. Physical Review Applied, 2021, 15(1): 014053. DOI: 10.1103/PhysRevApplied.15.014053.
[28] 杜艺杰,丛楠,何军,等.基于室温里德堡原子天线的宽频带电场测量[J].导航与控制,2022,21(5):192-198.DOI: 10.3969/j.issn.1674-5558.2022.h5.017.
[29] 杨凯,安强,姚佳伟,等.基于Rydberg原子的100 kHz~40 GHz超宽带射频传感器[J].光学学报,2022,42(15): 1528002.DOI: 10.3788/AOS202242.1528002.
[30] ANDERSON D A, SCHWARZKOPF A, MILLER S A, et al. Two-photon microwave transitions and strong-field effects in a room-temperature Rydberg-atom gas[J]. Physical Review A, 2014, 90(4): 043419. DOI: 10.1103/PhysRevA.90.043419.
[31] ANDERSON D A, MILLER S A, RAITHEL G, et al. Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell[J]. Physical Review Applied, 2016, 5(3): 034003. DOI: 10.1103/PhysRevApplied.5.034003.
[32] YOSHIDA S, REINHOLD C O, BURGDÖRFER J, et al. Photoexcitation of n≃305 Rydberg states in the presence of an rf drive field[J]. Physical Review A, 2012, 86(4): 043415. DOI: 10.1103/PhysRevA.86.043415.
[33] COOP S, PALACIOS S, GOMEZ P, et al. Floquet theory for atomic light-shift engineering with near-resonant polychromatic fields[J]. Optics Express, 2017, 25(26): 32550-32559. DOI: 10.1364/OE.25.032550.
[34] KUMAR S, FAN H Q, KÜBLER H, et al. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells[J]. Optics Express, 2017, 25(8): 8625-8637. DOI: 10.1364/OE.25.008625.
[35] JING M Y, HU Y, MA J, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 2020, 16(9): 911-915. DOI: 10.1038/s41567-020-0918-5.
[36] PRAJAPATI N, ROBINSON A K, BERWEGER S, et al. Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping[J]. Applied Physics Letters, 2021, 119(21): 214001. DOI: 10.1063/5.0069195.
[37] HOLLOWAY C L, PRAJAPATI N, ARTUSIO-GLIMPSE A B, et al. Rydberg atom-based field sensing enhancement using a split-ring resonator[J]. Applied Physics Letters, 2022, 120(20): 204001. DOI: 10.1063/5.0088532.
[38] DING D S, LIU Z K, SHI B S, et al. Enhanced metrology at the critical point of a many-body Rydberg atomic system[J]. Nature Physics, 2022, 18(12): 1447-1452. DOI: 10.1038/s41567-022-01777-8.
[39] BORÓWKA S, PYLYPENKO U, MAZELANIK M, et al. Continuous wideband microwave-to-optical converter based on room-temperature Rydberg atoms[J]. Nature Photonics, 2024, 18(1): 32-38. DOI: 10.1038/s41566-023-01295-w.
[40] ANDERSON D A, PARADIS E G, RAITHEL G. A vapor-cell atomic sensor for radio-frequency field detection using a polarization-selective field enhancement resonator[J]. Applied Physics Letters, 2018, 113(7): 073501. DOI: 10.1063/1.5038550.
[41] SEDLACEK J A, SCHWETTMANN A, KÜBLER H, et al. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell[J]. Physical Review Letters, 2013, 111(6): 063001. DOI: 10.1103/PhysRevLett.111.063001.
[42] JIAO Y C, HAO L P, HAN X X, et al. Atom-based radio-frequency field calibration and polarization measurement using cesium nDJ Floquet states[J]. Physical Review Applied, 2017, 8(1): 014028. DOI: 10.1103/PhysRevApplied.8.014028.
[43] 任盛源,景明勇,张好,等.基于原子的射频识别标签近场散射场矢量测量[J].光谱学与光谱分析,2022,42(1): 298-303.DOI: 10.3964/j.issn.1000-0593(2022)01-0298-06.
[44] WANG Y H, JIA F D, HAO J H, et al. Precise measurement of microwave polarization using a Rydberg atom-based mixer[J]. Optics Express, 2023, 31(6): 10449-10457. DOI: 10.1364/OE.485662.
[45] BÖHI P, TREUTLEIN P. Simple microwave field imaging technique using hot atomic vapor cells[J]. Applied Physics Letters, 2012, 101(18): 181107. DOI: 10.1063/1.4760267.
[46] HOLLOWAY C L, GORDON J A, SCHWARZKOPF A, et al. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied Physics Letters, 2014, 104(24): 244102. DOI: 10.1063/1.4883635.
[47] FAN H Q, KUMAR S, DASCHNER R, et al. Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells[J]. Optics Letters, 2014, 39(10): 3030-3033. DOI: 10.1364/OL.39.003030.
[48] 陈志文,佘圳跃,廖开宇,等.基于Rydberg原子天线的太赫兹测量[J].物理学报,2021,70(6):060702.DOI: 10.7498/aps.70.20201870.
[49] WADE C G, ŠIBALIC′ N, DE MELO N R, et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature Photonics, 2017, 11(1): 40-43. DOI: 10.1038/nphoton.2016.214.
[50] HOLLOWAY C, SIMONS M, HADDAB A H, et al. A multiple-band Rydberg atom-based receiver: AM/FM stereo reception[J]. IEEE Antennas and Propagation Magazine, 2021, 63(3): 63-76. DOI: 10.1109/MAP.2020.2976914.
[51] COX K C, MEYER D H, FATEMI F K, et al. Quantum-limited atomic receiver in the electrically small regime[J]. Physical Review Letters, 2018, 121(11): 110502. DOI: 10.1103/PhysRevLett.121.110502.
[52] MILLER S A, ANDERSON D A, RAITHEL G. Radio-frequency-modulated Rydberg states in a vapor cell[J]. New Journal of Physics, 2016, 18(5): 053017. DOI: 10.1088/1367-2630/18/5/053017.
[53] DEB A B, KJÆRGAARD N. Radio-over-fiber using an optical antenna based on Rydberg states of atoms[J]. Applied Physics Letters, 2018, 112(21): 211106. DOI: 10.1063/1.5031033.
[54] MEYER D H, COX K C, FATEMI F K, et al. Digital communication with Rydberg atoms and amplitude-modulated microwave fields[J]. Applied Physics Letters, 2018, 112(21): 211108 DOI: 10.1063/1.5028357.
[55] HOLLOWAY C L, SIMONS M T, GORDON J A, et al. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1853-1857. DOI: 10.1109/LAWP.2019.2931450.
[56] ANDERSON D A, SAPIRO R E, RAITHEL G. A self-calibrated SI-traceable Rydberg atom-based radio frequency electric field probe and measurement instrument[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5931-5941. DOI: 10.1109/TAP.2021.3060540.
[57] 武博,林沂,吴逢川,等.基于平行板谐振器的量子微波电场测量技术[J].物理学报,2023,72(3):034204.DOI: 10.7498/aps.72.20221582.
[58] SIMONS M T, HADDAB A H, GORDON J A, et al. Embedding a Rydberg atom-based sensor into an antenna for phase and amplitude detection of radio-frequency fields and modulated signals[J]. IEEE Access, 2019, 7: 164975-164985. DOI: 10.1109/ACCESS.2019.2949017.
[59] HOLLOWAY C L, SIMONS M T, KAUTZ M D, et al. A quantum-based power standard: Using Rydberg atoms for a SI-traceable radio-frequency power measurement technique in rectangular waveguides[J]. Applied Physics Letters, 2018, 113(9): 094101. DOI: 10.1063/1.5045212.
[60] SIMONS M T, GORDON J A, HOLLOWAY C L. Fiber-coupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor[J]. Applied Optics, 2018, 57(22): 6456-6460. DOI: 10.1364/AO.57.006456.
[61] 林沂,吴逢川,毛瑞棋,等.三端口光纤耦合原子气室探头的开发及其微波数字通信应用[J].物理学报,2022,71(17):170702.DOI: 10.7498/aps.71.20220594.
[62] HOLLOWAY C L, SIMONS M T, HADDAB A H, et al. A “real-time” guitar recording using Rydberg atoms and electromagnetically induced transparency: Quantum physics meets music[J]. AIP Advances, 2019, 9(6): 065110. DOI: 10.1063/1.5099036.
[63] LIU Z K, ZHANG L H, LIU B, et al. Deep learning enhanced Rydberg multifrequency microwave recognition[J]. Nature Communications, 2022, 13(1): 1997. DOI: 10.1038/s41467-022-29686-7.
[64] MEYER D H, HILL J C, KUNZ P D, et al. Simultaneous multiband demodulation using a Rydberg atomic sensor[J]. Physical Review Applied, 2023, 19(1): 014025. DOI: 10.1103/PhysRevApplied.19.014025.
[65] ROBINSON A. Microwave measurements using Rydberg atoms[D]. Boulder: University of Colorado Boulder, 2022.
[66] CARTER J D, CHERRY O, MARTIN J D D. Electric-field sensing near the surface microstructure of an atom chip using cold Rydberg atoms[J]. Physical Review A, 2012, 86(5): 053401. DOI: 10.1103/PhysRevA.86.053401.
[67] JONES L A, CARTER J D, MARTIN J D D. Rydberg atoms with a reduced sensitivity to dc and low-frequency electric fields[J]. Physical Review A, 2013, 87(2): 023423. DOI: 10.1103/PhysRevA.87.023423.
[68] BASON M G, TANASITTIKOSOL M, SARGSYAN A, et al. Enhanced electric field sensitivity of rf-dressed Rydberg dark states[J]. New Journal of Physics, 2010, 12(6): 065015. DOI: 10.1088/1367-2630/12/6/065015.
[69] PRAJAPATI N, ROBINSON A K, NORRGARD E B, et al. Rydberg atom-based AC/DC voltage measurements[C] // 2021 Conference on Lasers and Electro-Optics (CLEO). Piscataway, NJ: IEEE Press, 2021: 1-2.
[70] KANEKO N H. Review of quantum electrical standards and benefits and effects of the implementation of the ‘revised SI’[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2017, 12(5): 627-637. DOI: 10.1002/tee.22492.
[71] STOCK M. The revision of the SI-towards an international system of units based on defining constants[J]. Measurement Techniques, 2018, 60(12): 1169-1177. DOI: 10.1007/s11018-018-1336-2.
[72] 崔勇,吴明,宋晓,等.小型低频发射天线的研究进展[J].物理学报,2020,69(20):208401.DOI: 10.7498/aps.69.20200792.
[73] BURCH H C, GARRAUD A, MITCHELL M F, et al. Experimental generation of ELF radio signals using a rotating magnet[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6265-6272. DOI: 10.1109/TAP.2018.2869205.
[74] FAWOLE O C, TABIB-AZAR M. An electromechanically modulated permanent magnet antenna for wireless communication in harsh electromagnetic environments[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6927-6936. DOI: 10.1109/TAP.2017.2761555.
[75] KEMP M A, FRANZI M, HAASE A, et al. A high Q piezoelectric resonator as a portable VLF transmitter[J]. Nature Communications, 2019, 10(1): 1715. DOI: 10.1038/s41467-019-09680-2.
[76] ZENG R, WANG B, YU Z Q, et al. Design and application of an integrated electro-optic sensor for intensive electric field measurement[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(1): 312-319. DOI: 10.1109/TDEI.2011.5704523.
[77] LEE D J, KANG N W, CHOI J H, et al. Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing[J]. Sensors, 2011, 11(1): 806-824. DOI: 10.3390/s110100806.
[78] 焦月春,赵建明,贾锁堂.基于Rydberg原子的超宽频带射频传感器[J].物理学报,2018,67(7):073201.DOI: 10.7498/aps.67.20172636.
[79] JAU Y Y, CARTER T. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz[J]. Physical Review Applied, 2020, 13(5): 054034. DOI: 10.1103/PhysRevApplied.13.054034.
[80] 崔帅威,彭文鑫,李松浓,等.基于里德堡原子的工频电场测量[J].高电压技术,2023,49(2):644-650.DOI: 10.13336/j.1003-6520.hve.20221511.
[81] 李伟,张淳刚,张好,等.基于里德伯原子AC-Stark效应的工频电场测量[J].激光与光电子学进展,2021,58(17): 1702002.DOI: 10.3788/LOP202158.1702002.
[82] LIU W X, ZHANG L J, WANG T. Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy[J]. Chinese Physics B, 2023, 32(5): 053203. DOI: 10.1088/1674-1056/aca6db.
[83] VITEAU M, RADOGOSTOWICZ J, BASON M G, et al. Rydberg spectroscopy of a Rb MOT in the presence of applied or ion d electric fields[J]. Optics Express, 2011, 19(7): 6007-6019. DOI: 10.1364/OE.19.006007.
[84] TANASITTIKOSOL M. Rydberg dark states in external fields[D]. Durham: Durham University, 2011.
[85] JIAO Y C, HAN X X, YANG Z W, et al. Spectroscopy of cesium Rydberg atoms in strong radio-frequency fields[J]. Physical Review A, 2016, 94(2): 023832. DOI: 10.1103/PhysRevA.94.023832.
[86] PARADIS E, RAITHEL G, ANDERSON D A. Atomic measurements of high-intensity VHF-band radio-frequency fields with a Rydberg vapor-cell detector[J]. Physical Review A, 2019, 100(1): 013420. DOI: 10.1103/PhysRevA.100.013420.
[87] GORDON J A, HOLLOWAY C L, SCHWARZKOPF A, et al. Millimeter wave detection via Autler-Townes splitting in Rubidium Rydberg atoms[J]. Applied Physics Letters, 2014, 105(2): 024104. DOI: 10.1063/1.4890094.
[88] 景明勇.基于里德堡原子的微波超外差精密测量研究[D].太原:山西大学,2020.DOI: 10.27284/d.cnki.gsxiu.2020.000700.
[89] FAN H Q, KUMAR S, KÜBLER H, et al. Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49(10): 104004. DOI: 10.1088/0953-4075/49/10/104004.
[90] TU H T, LIAO K Y, ZHANG Z X, et al. High-efficiency coherent microwave-to-optics conversion via off-resonant scattering[J]. Nature Photonics, 2022, 16(4): 291-296. DOI: 10.1038/s41566-022-00959-3.
[91] HUANG Y, SHEN Y C, WANG J Y. From terahertz imaging to terahertz wireless communications[J]. Engineering, 2023, 22: 106-124. DOI: 10.1016/j.eng.2022.06.023.
[92] TATARIA H, SHAFI M, MOLISCH A F, et al. 6G wireless systems: vision, requirements, challenges, insights, and opportunities[J]. Proceedings of the IEEE, 2021, 109(7): 1166-1199. DOI: 10.1109/JPROC.2021.3061701.
[93] JANSEN C, WIETZKE S, PETERS O, et al. Terahertz imaging: applications and perspectives[J]. Applied Optics, 2010, 49(19): E48-E57. DOI: 10.1364/AO.49.000E48.
[94] JEPSEN P U, COOKE D G, KOCH M. Terahertz spectroscopy and imaging-Modern techniques and applications[J]. Laser & Photonics Reviews, 2011, 5(1): 124-166. DOI: 10.1002/lpor.201000011.
[95] HOLLOWAY C L, GORDON J A, JEFFERTS S, et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6169-6182. DOI: 10.1109/TAP.2014.2360208.
[96] DOWNES L A, MACKELLAR A R, WHITING D J, et al. Full-field terahertz imaging at kilohertz frame rates using atomic vapor[J]. Physical Review X, 2020, 10(1): 011027. DOI: 10.1103/PhysRevX.10.011027.
[97] ZHOU Y C, PENG R J, ZHANG J B, et al. Theoretical investigation on the mechanism and law of broadband terahertz wave detection using Rydberg quantum state[J]. IEEE Photonics Journal, 2022, 14(3): 1-8. DOI: 10.1109/JPHOT.2022.3178190.
[98] CHEN S Y, REED D J, MACKELLAR A R, et al. Terahertz electrometry via infrared spectroscopy of atomic vapor[J]. Optica, 2022, 9(5): 485-491. DOI: 10.1364/OPTICA.456761.
[99] YUAN J P, YANG W G, JING M Y, et al. Quantum sensing of microwave electric fields based on Rydberg atoms[J]. Reports on Progress in Physics, 2023, 86(10): 106001. DOI: 10.1088/1361-6633/acf22f.
[100] KINOSHITA M. Feasibility study for atomic measurement of microwave strength at arbitrary frequencies within the full X-band[C] // 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). Piscataway, NJ: IEEE Press, 2018: 1-2. DOI: 10.1109/CPEM.2018.8501061.
[101] KINOSHITA M, TOJIMA Y, IIDA H. Frequency extension of atomic measurement of microwave strength using Zeeman effect[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(6): 2274-2279. DOI: 10.1109/TIM.2018.2886869.
[102] LI H Q, HU J L, BAI J X, et al. Rydberg atom-based AM receiver with a weak continuous frequency carrier[J]. Optics Express, 2022, 30(8): 13522-13529. DOI: 10.1364/OE.454873.
[103] YAO J W, AN Q, ZHOU Y L, et al. Sensitivity enhancement of far-detuned RF field sensing based on Rydberg atoms dressed by a near-resonant RF field[J]. Optics Letters, 2022, 47(20): 5256-5259. DOI: 10.1364/OL.465048.
[104] SIMONS M T, ARTUSIO-GLIMPSE A B, HOLLOWAY C L, et al. Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning[J]. Physical Review A, 2021, 104(3): 032824. DOI: 10.1103/PhysRevA.104.032824.
[105] JIA F D, LIU X B, MEI J, et al. Span shift and extension of quantum microwave electrometry with Rydberg atoms dressed by an auxiliary microwave field[J]. Physical Review A, 2021, 103(6): 063113. DOI: 10.1103/PhysRevA.103.063113.
[106] LIU X H, LIAO K Y, ZHANG Z X, et al. Continuous-frequency microwave heterodyne detection in an atomic vapor cell[J]. Physical Review Applied, 2022, 18(5): 054003. DOI: 10.1103/PhysRevApplied.18.054003.
[107] ZHANG L H, LIU Z K, LIU B, et al. Rydberg microwave-frequency-comb spectrometer[J].Physical Review Applied, 2022, 18(1): 014033. DOI: 10.1103/PhysRevApplied.18.014033.
[108] 贺青,李栋,谷立,等.基于里德堡原子的无线电技术研究进展[J].强激光与粒子束,2024,36(7):127-145.DOI: 10.11884/HPLPB202436.240061.
[1] 袁伟强,宋树祥,程 洋,张勇敢. 超宽带微带带通滤波器的设计[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 32-38.
[2] 周述, 蒋品群, 宋树祥. 2.8~8.5 GHz 全集成高增益低功耗超宽带低噪声放大器设计[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 9-16.
Viewed
Full text
2
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 2

  From local
  Times 2
  Rate 100%

Abstract
23
Just accepted Online first Issue
0 0 23
  From Others local
  Times 22 1
  Rate 96% 4%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 许伦辉, 许润南. 基于时空矩阵分解的路网交通数据修复方法[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 20 -29 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发